Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2023, Volume 114, Issue 5, paper published in the English version journal (Mi mzm14247)  

Papers published in the English version of the journal

Pseudocomplete Riemannian Analytic Manifolds

V. A. Popov

Financial University under the Government of the Russian Federation, Moscow
Abstract: We study the analytic extension of a locally given Riemannian analytic metric to a metric of a nonextendable manifold. Various classes of locally isometric Riemannian analytic manifolds are studied. In each of these classes, the notion of the so-called pseudocomplete manifold is defined, which generalizes the notion of completeness of a manifold. A Riemannian analytic simply connected oriented manifold $M$ is said to be pseudocomplete if it is nonextendable and there exists no locally isometric orientation-preserving covering mapping with a simply connected Riemannian manifold. Among the pseudocomplete manifolds, we single out the “most symmetric” regular pseudocomplete manifolds.
Keywords: Riemannian analytic manifold, analytic extension, Lie algebra, Lie group, Killing vector field.
Received: 11.11.2022
Revised: 28.11.2022
English version:
Mathematical Notes, 2023, Volume 114, Issue 5, Pages 895–902
DOI: https://doi.org/10.1134/S000143462311024X
Bibliographic databases:
Document Type: Article
Language: English
Citation: V. A. Popov, “Pseudocomplete Riemannian Analytic Manifolds”, Math. Notes, 114:5 (2023), 895–902
Citation in format AMSBIB
\Bibitem{Pop23}
\by V.~A.~Popov
\paper Pseudocomplete Riemannian Analytic Manifolds
\jour Math. Notes
\yr 2023
\vol 114
\issue 5
\pages 895--902
\mathnet{http://mi.mathnet.ru/mzm14247}
\crossref{https://doi.org/10.1134/S000143462311024X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85187691460}
Linking options:
  • https://www.mathnet.ru/eng/mzm14247
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:32
    References:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025