Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2024, Volume 116, Issue 1, Pages 139–151
DOI: https://doi.org/10.4213/mzm14219
(Mi mzm14219)
 

On a statement of the boundary value problem for a generalized Cauchy–Riemann equation with nonisolated singularities in a lower-order coefficient

A. B. Rasulov, Yu. S. Fedorov

National Research University "Moscow Power Engineering Institute"
References:
Abstract: The paper studies how the statement of boundary value problems for a generalized Cauchy–Riemann equation is affected by nonisolated singularities in a lower-order coefficient of the equation assuming that these singularities are pairwise disjoint and do not pass through the origin. It turns out that posing only a condition on the boundary of the domain is insufficient in such problems. Therefore, we consider a case combining elements of the Riemann–Hilbert problem on the boundary of the domain and a linear transmission problem on the circles supporting the singularities in the lower-order coefficient inside the domain.
Keywords: generalized Cauchy–Riemann equation, singularity in a lower-order coefficient, Pompeiu–Vekua operator, Riemann–Hilbert problem, linear transmission problem.
Received: 19.12.2023
Revised: 09.02.2024
English version:
Mathematical Notes, 2024, Volume 116, Issue 1, Pages 119–129
DOI: https://doi.org/10.1134/S0001434624070101
Document Type: Article
UDC: 517.956.2
Language: Russian
Citation: A. B. Rasulov, Yu. S. Fedorov, “On a statement of the boundary value problem for a generalized Cauchy–Riemann equation with nonisolated singularities in a lower-order coefficient”, Mat. Zametki, 116:1 (2024), 139–151; Math. Notes, 116:1 (2024), 119–129
Citation in format AMSBIB
\Bibitem{RasFed24}
\by A.~B.~Rasulov, Yu.~S.~Fedorov
\paper On a statement of the boundary value problem for a generalized Cauchy--Riemann equation with nonisolated singularities in a lower-order coefficient
\jour Mat. Zametki
\yr 2024
\vol 116
\issue 1
\pages 139--151
\mathnet{http://mi.mathnet.ru/mzm14219}
\crossref{https://doi.org/10.4213/mzm14219}
\transl
\jour Math. Notes
\yr 2024
\vol 116
\issue 1
\pages 119--129
\crossref{https://doi.org/10.1134/S0001434624070101}
Linking options:
  • https://www.mathnet.ru/eng/mzm14219
  • https://doi.org/10.4213/mzm14219
  • https://www.mathnet.ru/eng/mzm/v116/i1/p139
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:82
    Full-text PDF :1
    Russian version HTML:1
    References:16
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024