Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2024, Volume 116, Issue 2, Pages 290–305
DOI: https://doi.org/10.4213/mzm14188
(Mi mzm14188)
 

Estimate of the convergence rate in the Riemann localization principle for trigonometric Fourier series of continuous functions

T. Yu. Semenovaab

a Lomonosov Moscow State University
b Moscow Center for Fundamental and Applied Mathematics
References:
Abstract: An estimate of the convergence rate is obtained in the Riemann localization principle for trigonometric series.
Keywords: Fourier series, Riemann localization principle.
Received: 03.02.2024
Revised: 09.03.2024
English version:
Mathematical Notes, 2024, Volume 116, Issue 2, Pages 328–341
DOI: https://doi.org/10.1134/S0001434624070265
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: T. Yu. Semenova, “Estimate of the convergence rate in the Riemann localization principle for trigonometric Fourier series of continuous functions”, Mat. Zametki, 116:2 (2024), 290–305; Math. Notes, 116:2 (2024), 328–341
Citation in format AMSBIB
\Bibitem{Sem24}
\by T.~Yu.~Semenova
\paper Estimate of the convergence rate in the Riemann localization principle for trigonometric Fourier series of continuous functions
\jour Mat. Zametki
\yr 2024
\vol 116
\issue 2
\pages 290--305
\mathnet{http://mi.mathnet.ru/mzm14188}
\crossref{https://doi.org/10.4213/mzm14188}
\transl
\jour Math. Notes
\yr 2024
\vol 116
\issue 2
\pages 328--341
\crossref{https://doi.org/10.1134/S0001434624070265}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85207192168}
Linking options:
  • https://www.mathnet.ru/eng/mzm14188
  • https://doi.org/10.4213/mzm14188
  • https://www.mathnet.ru/eng/mzm/v116/i2/p290
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024