Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2024, Volume 115, Issue 6, Pages 862–878
DOI: https://doi.org/10.4213/mzm14187
(Mi mzm14187)
 

Stability of a Traveling Wave on a Saddle-Node Trajectory

L. A. Kalyakin

Institute of Mathematics with Computing Centre — Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa
References:
Abstract: For semilinear partial differential equations, we consider the solution in the form of a plane wave traveling with a constant velocity. This solution is determined from an ordinary differential equation. A wave that stabilizes at infinity to equilibria corresponds to a phase trajectory connecting fixed points. The fundamental problem of the possibility of using such solutions in applications is their stability in the linear approximation. The stability problem is solved for a wave that corresponds to a trajectory from a saddle to a node. It is known that the velocity is determined ambiguously in this case. In this paper, a method is indicated for finding the limit of the velocity of stable waves for parabolic and hyperbolic equations, which can easily be implemented numerically.
Keywords: nonlinear differential equation, traveling wave, stability, phase trajectory, equilibrium.
Received: 12.11.2023
Revised: 13.01.2024
English version:
Mathematical Notes, 2024, Volume 115, Issue 6, Pages 931–943
DOI: https://doi.org/10.1134/S0001434624050286
Bibliographic databases:
Document Type: Article
UDC: 517.958
MSC: 35Q92
Language: Russian
Citation: L. A. Kalyakin, “Stability of a Traveling Wave on a Saddle-Node Trajectory”, Mat. Zametki, 115:6 (2024), 862–878; Math. Notes, 115:6 (2024), 931–943
Citation in format AMSBIB
\Bibitem{Kal24}
\by L.~A.~Kalyakin
\paper Stability of a~Traveling Wave on a~Saddle-Node Trajectory
\jour Mat. Zametki
\yr 2024
\vol 115
\issue 6
\pages 862--878
\mathnet{http://mi.mathnet.ru/mzm14187}
\crossref{https://doi.org/10.4213/mzm14187}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4774046}
\transl
\jour Math. Notes
\yr 2024
\vol 115
\issue 6
\pages 931--943
\crossref{https://doi.org/10.1134/S0001434624050286}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85198654536}
Linking options:
  • https://www.mathnet.ru/eng/mzm14187
  • https://doi.org/10.4213/mzm14187
  • https://www.mathnet.ru/eng/mzm/v115/i6/p862
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:92
    Full-text PDF :3
    Russian version HTML:3
    References:15
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024