Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2024, Volume 116, Issue 2, Pages 261–265
DOI: https://doi.org/10.4213/mzm14182
(Mi mzm14182)
 

Theorems on the representability of spaces as unions of at most countably many homogeneous subspaces

S. M. Komov

Moscow State Pedagogical University
References:
Abstract: A topological space $X$ is said to be homogeneous if for any $x, y\in X$ there exists a self-homeomorphism $f$ of $X$ such that $f(x)=y$.
We propose a method for constructing topological spaces representable as a union of $n$ but not fewer homogeneous subspaces, where $n$ is an arbitrary given positive integer. Further, we present a solution of a similar problem for the case of infinitely many summands.
Keywords: homogeneous topological space, topological sum of spaces, small inductive dimension.
Received: 28.10.2023
Revised: 20.03.2024
English version:
Mathematical Notes, 2024, Volume 116, Issue 2, Pages 279–282
DOI: https://doi.org/10.1134/S0001434624070228
Bibliographic databases:
Document Type: Article
UDC: 515.122.5
Language: Russian
Citation: S. M. Komov, “Theorems on the representability of spaces as unions of at most countably many homogeneous subspaces”, Mat. Zametki, 116:2 (2024), 261–265; Math. Notes, 116:2 (2024), 279–282
Citation in format AMSBIB
\Bibitem{Kom24}
\by S.~M.~Komov
\paper Theorems on the representability of spaces as unions of at most countably many homogeneous subspaces
\jour Mat. Zametki
\yr 2024
\vol 116
\issue 2
\pages 261--265
\mathnet{http://mi.mathnet.ru/mzm14182}
\crossref{https://doi.org/10.4213/mzm14182}
\transl
\jour Math. Notes
\yr 2024
\vol 116
\issue 2
\pages 279--282
\crossref{https://doi.org/10.1134/S0001434624070228}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85207175421}
Linking options:
  • https://www.mathnet.ru/eng/mzm14182
  • https://doi.org/10.4213/mzm14182
  • https://www.mathnet.ru/eng/mzm/v116/i2/p261
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024