|
This article is cited in 1 scientific paper (total in 1 paper)
On a multiplicative function on the set of shifted primes
M. B. Khripunova Vladimir State Pedagogical University
Abstract:
It is proved that if $f(n)$ is a multiplicative function taking a value $\xi$ on the set of primes such that $\xi^3=1$, $\xi\ne1$ and $f^3(p^r)=1$ for $r\ge2$, then there exists $\theta\in(0,1)$, for which
$$
\biggl|\sum_{p\le x}f(p+1)\biggr|\le\theta\pi(x),
$$
where
$$
\pi(x)=\sum_{p\le x}1.
$$
Received: 06.08.1997
Citation:
M. B. Khripunova, “On a multiplicative function on the set of shifted primes”, Mat. Zametki, 64:3 (1998), 457–464; Math. Notes, 64:3 (1998), 394–400
Linking options:
https://www.mathnet.ru/eng/mzm1417https://doi.org/10.4213/mzm1417 https://www.mathnet.ru/eng/mzm/v64/i3/p457
|
|