Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1998, Volume 64, Issue 3, Pages 457–464
DOI: https://doi.org/10.4213/mzm1417
(Mi mzm1417)
 

This article is cited in 1 scientific paper (total in 1 paper)

On a multiplicative function on the set of shifted primes

M. B. Khripunova

Vladimir State Pedagogical University
Full-text PDF (189 kB) Citations (1)
References:
Abstract: It is proved that if $f(n)$ is a multiplicative function taking a value $\xi$ on the set of primes such that $\xi^3=1$, $\xi\ne1$ and $f^3(p^r)=1$ for $r\ge2$, then there exists $\theta\in(0,1)$, for which
$$ \biggl|\sum_{p\le x}f(p+1)\biggr|\le\theta\pi(x), $$
where
$$ \pi(x)=\sum_{p\le x}1. $$
Received: 06.08.1997
English version:
Mathematical Notes, 1998, Volume 64, Issue 3, Pages 394–400
DOI: https://doi.org/10.1007/BF02314850
Bibliographic databases:
UDC: 511.3
Language: Russian
Citation: M. B. Khripunova, “On a multiplicative function on the set of shifted primes”, Mat. Zametki, 64:3 (1998), 457–464; Math. Notes, 64:3 (1998), 394–400
Citation in format AMSBIB
\Bibitem{Khr98}
\by M.~B.~Khripunova
\paper On a multiplicative function on the set of shifted primes
\jour Mat. Zametki
\yr 1998
\vol 64
\issue 3
\pages 457--464
\mathnet{http://mi.mathnet.ru/mzm1417}
\crossref{https://doi.org/10.4213/mzm1417}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1680185}
\zmath{https://zbmath.org/?q=an:0936.11053}
\transl
\jour Math. Notes
\yr 1998
\vol 64
\issue 3
\pages 394--400
\crossref{https://doi.org/10.1007/BF02314850}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000079258700015}
Linking options:
  • https://www.mathnet.ru/eng/mzm1417
  • https://doi.org/10.4213/mzm1417
  • https://www.mathnet.ru/eng/mzm/v64/i3/p457
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:305
    Full-text PDF :180
    References:57
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024