Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2023, Volume 114, Issue 4, Pages 543–562
DOI: https://doi.org/10.4213/mzm14119
(Mi mzm14119)
 

This article is cited in 3 scientific papers (total in 3 papers)

Asymptotics in the Spectral Parameter for Solutions of $2 \times 2$ Systems of Ordinary Differential Equations

A. P. Kosarevab, A. A. Shkalikovab

a Lomonosov Moscow State University
b Moscow Center for Fundamental and Applied Mathematics
Full-text PDF (732 kB) Citations (3)
References:
Abstract: We consider a $2 \times 2$ system of ordinary differential equations
$$ y'-By=\lambda Ay, \qquad y=y(x), \quad x \in [0, 1], $$
where $A=\operatorname{diag}\{a_1(x), a_2(x)\}$, $B=\{b_{kj}(x)\}_{k, j=1}$, and all functions occurring in the matrices are complex-valued and integrable. In the case
$$ a_1,a_2, b_{21},b_{12} \in W^n_1[0,1], \qquad b_{11}, b_{22} \in W^{n-1}_1[0,1], $$
we obtain $n+1$ terms of the asymptotic expansion in powers of $\lambda^{-1}$, $\lambda \to \infty$, of the fundamental matrix of solutions of this equation. These asymptotic expansions are valid in the half-planes $\Pi_{\kappa}=\{\lambda \in \mathbb{C} \mid \operatorname{Re}{\lambda} \ge -\kappa \}$, $\kappa \in \mathbb{R}$, and $-\Pi_{\kappa}$ if $a_1(x)-a_2(x) >0$. They hold in the sectors $S=\{\lambda \in \mathbb{C} \mid \lvert\operatorname{arg}\lambda\rvert \le \pi/2-\phi-\varepsilon\}$, $\varepsilon > 0$, and $-S$ under the condition that $\lvert\operatorname{arg}\{a_1(x)-a_2(x)\}\rvert<\phi<\pi /2$. The main novelty of the work is that we assume minimal conditions for the smoothness of the functions and in addition we obtain explicit formulae for matrices involved in asymptotic expansions. The results are also new for the Dirac system.
Keywords: spectral asymptotics for solutions of ordinary differential equations and systems, regular and nonregular boundary value problems, spectral problems.
Funding agency Grant number
Russian Science Foundation 20-11-20261
This work was financially supported by the Russian Science Foundation, project 20-11-20261, https://rscf.ru/en/project/20-11-20261/.
Received: 27.06.2023
English version:
Mathematical Notes, 2023, Volume 114, Issue 4, Pages 472–488
DOI: https://doi.org/10.1134/S0001434623090195
Bibliographic databases:
Document Type: Article
UDC: 517
Language: Russian
Citation: A. P. Kosarev, A. A. Shkalikov, “Asymptotics in the Spectral Parameter for Solutions of $2 \times 2$ Systems of Ordinary Differential Equations”, Mat. Zametki, 114:4 (2023), 543–562; Math. Notes, 114:4 (2023), 472–488
Citation in format AMSBIB
\Bibitem{KosShk23}
\by A.~P.~Kosarev, A.~A.~Shkalikov
\paper Asymptotics in the Spectral Parameter for Solutions of $2 \times 2$ Systems of Ordinary Differential Equations
\jour Mat. Zametki
\yr 2023
\vol 114
\issue 4
\pages 543--562
\mathnet{http://mi.mathnet.ru/mzm14119}
\crossref{https://doi.org/10.4213/mzm14119}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4658799}
\transl
\jour Math. Notes
\yr 2023
\vol 114
\issue 4
\pages 472--488
\crossref{https://doi.org/10.1134/S0001434623090195}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85174716151}
Linking options:
  • https://www.mathnet.ru/eng/mzm14119
  • https://doi.org/10.4213/mzm14119
  • https://www.mathnet.ru/eng/mzm/v114/i4/p543
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:304
    Full-text PDF :20
    Russian version HTML:128
    References:32
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024