Abstract:
We consider the Banach algebra A of singular integral operators with matrix piecewise continuous coefficients in the reflexive Orlicz space LnM(Γ). We assume that Γ belongs to a certain wide subclass of the class of Carleson curves; this subclass includes curves with cusps, as well as curves of the logarithmic spiral type. We obtain an index formula for an arbitrary operator from the algebra A in terms of the symbol of this operator.
Citation:
A. Yu. Karlovich, “The index of singular integral operators in reflexive Orlicz spaces”, Mat. Zametki, 64:3 (1998), 383–396; Math. Notes, 64:3 (1998), 330–341
\Bibitem{Kar98}
\by A.~Yu.~Karlovich
\paper The index of singular integral operators in reflexive Orlicz spaces
\jour Mat. Zametki
\yr 1998
\vol 64
\issue 3
\pages 383--396
\mathnet{http://mi.mathnet.ru/mzm1408}
\crossref{https://doi.org/10.4213/mzm1408}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1680142}
\zmath{https://zbmath.org/?q=an:0933.47033}
\transl
\jour Math. Notes
\yr 1998
\vol 64
\issue 3
\pages 330--341
\crossref{https://doi.org/10.1007/BF02314841}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000079258700006}
Linking options:
https://www.mathnet.ru/eng/mzm1408
https://doi.org/10.4213/mzm1408
https://www.mathnet.ru/eng/mzm/v64/i3/p383
This publication is cited in the following 7 articles:
Jafarov S.Z., “On Approximation in Weighted Smirnov-Orlicz Classes”, Complex Var. Elliptic Equ., 57:5 (2012), 567–577
Karlovich A.Yu., “Singular Integral Operators on Variable Lebesgue Spaces with Radial Oscillating Weights”, Operator Algebras, Operator Theory and Applications, Operator Theory Advances and Applications, 195, eds. Grobler J., Labuschagne L., Moller M., Birkhauser Verlag Ag, 2010, 185–212
Alexei Yu. Karlovich, Operator Algebras, Operator Theory and Applications, 2009, 185
Karlovich A.Yu., “Algebras of Singular Integral Operators with Piecewise Continuous Coefficients on Weighted Nakano Spaces”, Extended Field of Operator Theory, Operator Theory : Advances and Applications, 171, ed. Dritschel M., Birkhauser Verlag Ag, 2007, 171–188
Karlovich, AY, “Algebras of singular integral operators with PC coefficients in rearrangement-invariant spaces with Muckenhoupt weights”, Journal of Operator Theory, 47:2 (2002), 303
Karlovich, YI, “A shift-invariant algebra of singular integral operators with oscillating coefficients”, Integral Equations and Operator Theory, 39:4 (2001), 441
Alexei Yu. Karlovich, “Singular integral operators with piecewise continuous coefficients in reflexive rearrangement-invariant spaces”, Integr equ oper theory, 32:4 (1998), 436