Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2023, Volume 114, Issue 5, Pages 659–668
DOI: https://doi.org/10.4213/mzm14054
(Mi mzm14054)
 

On the Existence of Solutions of the Dirichlet Problem for the $p$-Laplacian on Riemannian Manifolds

S. M. Bakiev, A. A. Kon'kov

Lomonosov Moscow State University
References:
Abstract: We obtain a criterion for the existence of solutions of the problem
$$ \Delta_p u=0 \quad\text{in}\quad M \setminus \partial M,\qquad u|_{\partial M}=h $$
with a bounded Dirichlet integral, where $M$ is an oriented complete Riemannian manifold with boundary and $h \in W_{p,\mathrm{loc}}^1 (M)$, $p > 1$.
Keywords: $p$-Laplacian, Dirichlet problem, Riemannian manifold.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-284
Russian Science Foundation 20-11-20272-П
The research of the second author was supported in part (studying the nonlinear capacity) by the Ministry of Science and Higher Education of the Russian Federation in the framework of the program of Moscow Center for Fundamental and Applied Matematics (Agreement no. 075-15-2022-284) and in part (studying the existence of solutions) by the Russian Science Foundation, project 20-11-20272, https://rscf.ru/en/project/20-11-20272/.
Received: 01.06.2023
Revised: 06.06.2023
English version:
Mathematical Notes, 2023, Volume 114, Issue 5, Pages 679–686
DOI: https://doi.org/10.1134/S0001434623110056
Bibliographic databases:
Document Type: Article
UDC: 517.954
Language: Russian
Citation: S. M. Bakiev, A. A. Kon'kov, “On the Existence of Solutions of the Dirichlet Problem for the $p$-Laplacian on Riemannian Manifolds”, Mat. Zametki, 114:5 (2023), 659–668; Math. Notes, 114:5 (2023), 679–686
Citation in format AMSBIB
\Bibitem{BakKon23}
\by S.~M.~Bakiev, A.~A.~Kon'kov
\paper On~the Existence of Solutions of the Dirichlet Problem for the $p$-Laplacian on Riemannian Manifolds
\jour Mat. Zametki
\yr 2023
\vol 114
\issue 5
\pages 659--668
\mathnet{http://mi.mathnet.ru/mzm14054}
\crossref{https://doi.org/10.4213/mzm14054}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4716477}
\transl
\jour Math. Notes
\yr 2023
\vol 114
\issue 5
\pages 679--686
\crossref{https://doi.org/10.1134/S0001434623110056}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85187638361}
Linking options:
  • https://www.mathnet.ru/eng/mzm14054
  • https://doi.org/10.4213/mzm14054
  • https://www.mathnet.ru/eng/mzm/v114/i5/p659
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:116
    Full-text PDF :9
    Russian version HTML:35
    References:30
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024