Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2024, Volume 115, Issue 3, Pages 317–329
DOI: https://doi.org/10.4213/mzm14048
(Mi mzm14048)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the Generation of the Groups $\mathrm{SL}_n(\mathbb{Z}+i\mathbb{Z})$ and $\mathrm{PSL}_n(\mathbb{Z}+i\mathbb{Z})$ by Three Involutions Two of Which Commute. II

M. A. Vsemirnova, R. I. Gvozdevb, Ya. N. Nuzhinb, T. B. Shaipovac

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
b Siberian Federal University, Krasnoyarsk
c Krasnoyarsk Scientific Center of SB RAS
References:
Abstract: We complete the solution of the problem on the existence of generating triplets of involutions two of which commute for the special linear group $\mathrm{SL}_n(\mathbb{Z}+i\mathbb{Z})$ and the projective special linear group $\mathrm{PSL}_n(\mathbb{Z}+i\mathbb{Z})$ over the ring of Gaussian integers. The answer has only been unknown for $\mathrm{SL}_5$, $\mathrm{PSL}_6$, and $\mathrm{SL}_{10}$. We explicitly indicate the generating triples of involutions in these three cases, and we make a significant use of computer calculations in the proof. Taking into account the known results for the problem under consideration, as a consequence, we obtain the following two statements. The group $\mathrm{SL}_n(\mathbb{Z}+i\mathbb{Z})$ ($\mathrm{PSL}_n(\mathbb{Z}+i\mathbb{Z})$, respectively) is generated by three involutions two of which commute if and only if $n\geqslant 5$ and $n\neq 6$ (if $n\geqslant 5$, respectively).
Keywords: special and projective special linear groups, ring of Gaussian integers, generating triplet of involutions.
Funding agency Grant number
Russian Science Foundation 22-21-00733
This work was financially supported by the Russian Science Foundation, project no. 22-21-00733, https://rscf.ru/en/project/22-21-00733/.
Received: 29.05.2023
Revised: 31.08.2023
English version:
Mathematical Notes, 2024, Volume 115, Issue 3, Pages 289–300
DOI: https://doi.org/10.1134/S0001434624030015
Bibliographic databases:
Document Type: Article
UDC: 511
MSC: 20G30
Language: Russian
Citation: M. A. Vsemirnov, R. I. Gvozdev, Ya. N. Nuzhin, T. B. Shaipova, “On the Generation of the Groups $\mathrm{SL}_n(\mathbb{Z}+i\mathbb{Z})$ and $\mathrm{PSL}_n(\mathbb{Z}+i\mathbb{Z})$ by Three Involutions Two of Which Commute. II”, Mat. Zametki, 115:3 (2024), 317–329; Math. Notes, 115:3 (2024), 289–300
Citation in format AMSBIB
\Bibitem{VseGvoNuz24}
\by M.~A.~Vsemirnov, R.~I.~Gvozdev, Ya.~N.~Nuzhin, T.~B.~Shaipova
\paper On the Generation of the Groups $\mathrm{SL}_n(\mathbb{Z}+i\mathbb{Z})$ and $\mathrm{PSL}_n(\mathbb{Z}+i\mathbb{Z})$
by Three Involutions Two of Which Commute. II
\jour Mat. Zametki
\yr 2024
\vol 115
\issue 3
\pages 317--329
\mathnet{http://mi.mathnet.ru/mzm14048}
\crossref{https://doi.org/10.4213/mzm14048}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4767905}
\transl
\jour Math. Notes
\yr 2024
\vol 115
\issue 3
\pages 289--300
\crossref{https://doi.org/10.1134/S0001434624030015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85197670709}
Linking options:
  • https://www.mathnet.ru/eng/mzm14048
  • https://doi.org/10.4213/mzm14048
  • https://www.mathnet.ru/eng/mzm/v115/i3/p317
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024