On the Generation of the Groups $\mathrm{SL}_n(\mathbb{Z}+i\mathbb{Z})$ and $\mathrm{PSL}_n(\mathbb{Z}+i\mathbb{Z})$
by Three Involutions Two of Which Commute. II
Abstract:
We complete the solution of the problem on the existence of generating triplets of involutions two of which commute for the special linear group $\mathrm{SL}_n(\mathbb{Z}+i\mathbb{Z})$ and the projective special linear group $\mathrm{PSL}_n(\mathbb{Z}+i\mathbb{Z})$ over the ring of Gaussian integers. The answer has only been unknown for $\mathrm{SL}_5$, $\mathrm{PSL}_6$, and $\mathrm{SL}_{10}$. We explicitly indicate the generating triples of involutions in these three cases, and we make a significant use of computer calculations in the proof. Taking into account the known results for the problem under consideration, as a consequence, we obtain the following two statements. The group $\mathrm{SL}_n(\mathbb{Z}+i\mathbb{Z})$ ($\mathrm{PSL}_n(\mathbb{Z}+i\mathbb{Z})$, respectively) is generated by three involutions two of which commute if and only if $n\geqslant 5$ and $n\neq 6$ (if $n\geqslant 5$, respectively).
Keywords:special and projective special linear groups, ring of Gaussian integers,
generating triplet of involutions.
Citation:
M. A. Vsemirnov, R. I. Gvozdev, Ya. N. Nuzhin, T. B. Shaipova, “On the Generation of the Groups $\mathrm{SL}_n(\mathbb{Z}+i\mathbb{Z})$ and $\mathrm{PSL}_n(\mathbb{Z}+i\mathbb{Z})$
by Three Involutions Two of Which Commute. II”, Mat. Zametki, 115:3 (2024), 317–329; Math. Notes, 115:3 (2024), 289–300
\Bibitem{VseGvoNuz24}
\by M.~A.~Vsemirnov, R.~I.~Gvozdev, Ya.~N.~Nuzhin, T.~B.~Shaipova
\paper On the Generation of the Groups $\mathrm{SL}_n(\mathbb{Z}+i\mathbb{Z})$ and $\mathrm{PSL}_n(\mathbb{Z}+i\mathbb{Z})$
by Three Involutions Two of Which Commute. II
\jour Mat. Zametki
\yr 2024
\vol 115
\issue 3
\pages 317--329
\mathnet{http://mi.mathnet.ru/mzm14048}
\crossref{https://doi.org/10.4213/mzm14048}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4767905}
\transl
\jour Math. Notes
\yr 2024
\vol 115
\issue 3
\pages 289--300
\crossref{https://doi.org/10.1134/S0001434624030015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85197670709}