Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2024, Volume 115, Issue 3, Pages 385–391
DOI: https://doi.org/10.4213/mzm14042
(Mi mzm14042)
 

Approximation by Refinement Masks

E. A. Lebedeva

Saint Petersburg State University
References:
Abstract: We construct a Parseval wavelet frame with a compact support for an arbitrary continuous $2\pi$-periodic function $f$$f(0)=1$, satisfying the inequality $|f(x)|^2+|f(x+\pi)|^2\leqslant 1$. The frame refinement mask uniformly approximates $f$. The refining function has stable integer shifts.
Keywords: refinement mask, unitary extension principle, Parseval wavelet frame, stability of integer shifts, filter bank, exact reconstruction.
Funding agency Grant number
Russian Science Foundation 23-11-00178
This work was financially supported by the Russian Science Foundation, grant no. 23-11-00178, https://rscf.ru/en/project/23-11-00178/.
Received: 24.05.2023
Revised: 29.09.2023
English version:
Mathematical Notes, 2024, Volume 115, Issue 3, Pages 352–357
DOI: https://doi.org/10.1134/S0001434624030076
Bibliographic databases:
Document Type: Article
UDC: 517
MSC: 42C40
Language: Russian
Citation: E. A. Lebedeva, “Approximation by Refinement Masks”, Mat. Zametki, 115:3 (2024), 385–391; Math. Notes, 115:3 (2024), 352–357
Citation in format AMSBIB
\Bibitem{Leb24}
\by E.~A.~Lebedeva
\paper Approximation by Refinement Masks
\jour Mat. Zametki
\yr 2024
\vol 115
\issue 3
\pages 385--391
\mathnet{http://mi.mathnet.ru/mzm14042}
\crossref{https://doi.org/10.4213/mzm14042}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4767910}
\transl
\jour Math. Notes
\yr 2024
\vol 115
\issue 3
\pages 352--357
\crossref{https://doi.org/10.1134/S0001434624030076}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85197559883}
Linking options:
  • https://www.mathnet.ru/eng/mzm14042
  • https://doi.org/10.4213/mzm14042
  • https://www.mathnet.ru/eng/mzm/v115/i3/p385
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:82
    Russian version HTML:2
    References:19
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024