Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2023, Volume 114, Issue 5, paper published in the English version journal (Mi mzm14013)  

Papers published in the English version of the journal

Sums of Weakly Sequentially Recurrent Operators

N. Karim, M. Amouch

Department of Mathematics, Faculty of Science, Chouaib Doukkali University, El Jadida, Morocco
Abstract: An operator $T$ in a Banach space $X$ is said to be recurrent if the set
\begin{equation*} \{x\in X:\ x\in \overline{O(T,Tx)}\} \end{equation*}
is dense in $X$. The operator $T$ is said to be weakly sequentially recurrent if the set
\begin{equation*} \{x\in X:\ x\in \overline{O(T,Tx)}^w\} \end{equation*}
is weakly dense in $X$. Costakis et al. [Complex Anal. Oper. Theory 8 (8), 1601–1643] ask if $T\oplus T$ should be recurrent whenever so is $T$. This question has been answered negatively by Grivaux et al. [arXiv: 2212.03652]. In this paper, we prove the existence of an operator $T$ weakly sequentially recurrent such that $T\oplus T$ is not.
Keywords: recurrent operator, weakly recurrent operator, direct sum of weakly recurrent operators.
Received: 27.04.2023
Revised: 15.10.2023
English version:
Mathematical Notes, 2023, Volume 114, Issue 5, Pages 818–824
DOI: https://doi.org/10.1134/S0001434623110172
Bibliographic databases:
Document Type: Article
MSC: 47A16,37B20
Language: English
Citation: N. Karim, M. Amouch, “Sums of Weakly Sequentially Recurrent Operators”, Math. Notes, 114:5 (2023), 818–824
Citation in format AMSBIB
\Bibitem{KarAmo23}
\by N.~Karim, M.~Amouch
\paper Sums of Weakly Sequentially Recurrent Operators
\jour Math. Notes
\yr 2023
\vol 114
\issue 5
\pages 818--824
\mathnet{http://mi.mathnet.ru/mzm14013}
\crossref{https://doi.org/10.1134/S0001434623110172}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4565105}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85187891443}
Linking options:
  • https://www.mathnet.ru/eng/mzm14013
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:33
    References:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024