Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2024, Volume 115, Issue 6, paper published in the English version journal (Mi mzm13991)  

Papers published in the English version of the journal

A Study on Strongly Lacunary Ward Continuity in 2-Normed Spaces

S. Ersan

Maltepe University, Istanbul, Turkey
Abstract: In this paper, we study the ideal strong lacunary ward compactness of a subset of a 2-normed space $X$ and the ideal strongly lacunary ward continuity of a function $f$ on $X$. Here a subset $E$ of $X$ is said to be ideal strong lacunary ward compact if any sequence in $E$ has an ideal strong lacunary quasi-Cauchy subsequence. Additionally, a function on $X$ is said to be ideal strong lacunary ward continuous if it preserves ideal strong lacunary quasi-Cauchy sequences; an ideal is defined to be a hereditary and additive family of subsets of $\mathbb{N}$. We find that a subset $E$ of $X$ with a countable Hamel basis is totally bounded if and only if it is ideal strong lacunary ward compact.
Keywords: continuity, 2-normed spaces, compactness, ideal.
Received: 14.04.2023
Revised: 11.03.2024
English version:
Mathematical Notes, 2024, Volume 115, Issue 6, Pages 908–916
DOI: https://doi.org/10.1134/S0001434624050262
Bibliographic databases:
Document Type: Article
Language: English
Citation: S. Ersan, “A Study on Strongly Lacunary Ward Continuity in 2-Normed Spaces”, Math. Notes, 115:6 (2024), 908–916
Citation in format AMSBIB
\Bibitem{Ers24}
\by S.~Ersan
\paper A Study on Strongly Lacunary Ward Continuity in 2-Normed Spaces
\jour Math. Notes
\yr 2024
\vol 115
\issue 6
\pages 908--916
\mathnet{http://mi.mathnet.ru/mzm13991}
\crossref{https://doi.org/10.1134/S0001434624050262}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4781279}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85198636414}
Linking options:
  • https://www.mathnet.ru/eng/mzm13991
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024