Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2024, Volume 115, Issue 3, Pages 408–421
DOI: https://doi.org/10.4213/mzm13984
(Mi mzm13984)
 

On the Additive Complexity of Some Numerical Sequences

I. S. Sergeev

Research Institute "Kvant", Moscow
References:
Abstract: The paper presents several results concerning the complexity of calculations in the model of vector additive chains. A refinement of N. Pippenger's upper bound is obtained for the complexity of the class of integer $m \times n$ matrices with the constraint $q$ on the size of the coefficients as $H=mn\log_2 q \to \infty$ up to $\min\{m,n\}\log_2 q+(1+o(1))H/\log_2 H+n$. The established complexity of calculating the number $2^n-1$ in the basis of powers of two is asymptotically sharp: it is equal to $(2+o(1))\sqrt n$. Based on generalized Sidon sequences, constructive examples of numerical sets of cardinality $n$ are constructed: sets, with polynomial size of elements, having the complexity $n+\Omega(n^{1-\varepsilon})$ for any $\varepsilon>0$ and sets, with the size $n^{O(\log n)}$ of the elements, having the complexity $n+\Omega(n)$.
Keywords: additive chains, gate circuits, Sidon sets, ${\mathcal B}_k$-sets, sums of sets, sum-free sets, cycles in graphs, lower bounds for complexity.
Received: 12.04.2023
Revised: 11.07.2023
English version:
Mathematical Notes, 2024, Volume 115, Issue 3, Pages 378–389
DOI: https://doi.org/10.1134/S0001434624030106
Bibliographic databases:
Document Type: Article
UDC: 519.71
Language: Russian
Citation: I. S. Sergeev, “On the Additive Complexity of Some Numerical Sequences”, Mat. Zametki, 115:3 (2024), 408–421; Math. Notes, 115:3 (2024), 378–389
Citation in format AMSBIB
\Bibitem{Ser24}
\by I.~S.~Sergeev
\paper On the Additive Complexity
of Some Numerical Sequences
\jour Mat. Zametki
\yr 2024
\vol 115
\issue 3
\pages 408--421
\mathnet{http://mi.mathnet.ru/mzm13984}
\crossref{https://doi.org/10.4213/mzm13984}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4767912}
\transl
\jour Math. Notes
\yr 2024
\vol 115
\issue 3
\pages 378--389
\crossref{https://doi.org/10.1134/S0001434624030106}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85197510073}
Linking options:
  • https://www.mathnet.ru/eng/mzm13984
  • https://doi.org/10.4213/mzm13984
  • https://www.mathnet.ru/eng/mzm/v115/i3/p408
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:79
    References:13
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024