Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2023, Volume 114, Issue 5, Pages 643–658
DOI: https://doi.org/10.4213/mzm13962
(Mi mzm13962)
 

On the Existence of Eigenvalues of the Three-Particle Discrete Schrödinger Operator

Zh. I. Abdullaeva, J. Kh. Boymurodovb, A. M. Khalkhuzhaevc

a Samarkand State University
b Navoi State Pedagogical Institute
c V. I. Romanovsky Institute of Mathematics of the Academy of Sciences of the Republic of Uzbekistan, Tashkent
References:
Abstract: We consider the three-particle Schrödinger operator $H_{\mu,\lambda,\gamma} (\mathbf K)$, $\mathbf K\in \mathbb{T}^3$, associated with a system of three particles (of which two are bosons with mass $1$ and one is arbitrary with mass $m=1/\gamma<1$) coupled by pairwise contact potentials $\mu>0$ and $\lambda>0$ on the three-dimensional lattice $\mathbb{Z}^3$. We prove that there exist critical mass ratio values $\gamma=\gamma_{1}$ and $\gamma=\gamma_{2}$ such that for sufficiently large $\mu>0$ and fixed $\lambda>0$ the operator $H_{\mu,\lambda,\gamma}(\mathbf{0})$, $\mathbf{0}=(0,0,0)$, has at least one eigenvalue lying to the left of the essential spectrum for $\gamma\in (0,\gamma_{1})$, at least two such eigenvalues for $\gamma\in (\gamma_{1},\gamma_{2})$, and at least four such eigenvalues for $\gamma\in (\gamma_{2}, +\infty)$.
Keywords: Schrödinger operator, lattice, Hamiltonian, zero-range potential, boson, eigenvalue, total quasimomentum, invariant subspace, Faddeev operator.
Received: 25.03.2023
English version:
Mathematical Notes, 2023, Volume 114, Issue 5, Pages 645–658
DOI: https://doi.org/10.1134/S0001434623110019
Bibliographic databases:
Document Type: Article
UDC: 517.946
PACS: Secondary: 47A10, 47A55,47A75,47J10, 34L40
MSC: 81Q10
Language: Russian
Citation: Zh. I. Abdullaev, J. Kh. Boymurodov, A. M. Khalkhuzhaev, “On the Existence of Eigenvalues of the Three-Particle Discrete Schrödinger Operator”, Mat. Zametki, 114:5 (2023), 643–658; Math. Notes, 114:5 (2023), 645–658
Citation in format AMSBIB
\Bibitem{AbdBoyKha23}
\by Zh.~I.~Abdullaev, J.~Kh.~Boymurodov, A.~M.~Khalkhuzhaev
\paper On the Existence of Eigenvalues of the Three-Particle Discrete Schr\"{o}dinger Operator
\jour Mat. Zametki
\yr 2023
\vol 114
\issue 5
\pages 643--658
\mathnet{http://mi.mathnet.ru/mzm13962}
\crossref{https://doi.org/10.4213/mzm13962}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4716476}
\transl
\jour Math. Notes
\yr 2023
\vol 114
\issue 5
\pages 645--658
\crossref{https://doi.org/10.1134/S0001434623110019}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85187705884}
Linking options:
  • https://www.mathnet.ru/eng/mzm13962
  • https://doi.org/10.4213/mzm13962
  • https://www.mathnet.ru/eng/mzm/v114/i5/p643
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:196
    Full-text PDF :17
    Russian version HTML:49
    References:39
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024