Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2023, Volume 114, Issue 4, Pages 579–590
DOI: https://doi.org/10.4213/mzm13961
(Mi mzm13961)
 

This article is cited in 2 scientific papers (total in 2 papers)

Orthogonal Curvilinear Coordinate Systems and Torsion-Free Sheaves over Reducible Spectral Curves

A. E. Mironovab, A. Senningera, I. A. Taimanovab

a Novosibirsk State University
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Full-text PDF (583 kB) Citations (2)
References:
Abstract: The methods of finite-gap integration are used to construct orthogonal curvilinear coordinate systems in the Euclidean space corresponding to sheaves of rank one without torsion over reducible singular spectral curves.
Keywords: orthogonal curvilinear coordinates, finite-gap integration, spectral curve, torsion-free sheaf.
Funding agency Grant number
Russian Science Foundation 19-11-00044-П
This work was financially supported by the Russian Science Foundation, project 19-11-00044-P, https://rscf.ru/en/project/19-11-00044/.
Received: 25.03.2023
English version:
Mathematical Notes, 2023, Volume 114, Issue 4, Pages 573–582
DOI: https://doi.org/10.1134/S0001434623090250
Bibliographic databases:
Document Type: Article
UDC: 517.957
Language: Russian
Citation: A. E. Mironov, A. Senninger, I. A. Taimanov, “Orthogonal Curvilinear Coordinate Systems and Torsion-Free Sheaves over Reducible Spectral Curves”, Mat. Zametki, 114:4 (2023), 579–590; Math. Notes, 114:4 (2023), 573–582
Citation in format AMSBIB
\Bibitem{MirSenTai23}
\by A.~E.~Mironov, A.~Senninger, I.~A.~Taimanov
\paper Orthogonal Curvilinear Coordinate Systems and Torsion-Free Sheaves over Reducible Spectral Curves
\jour Mat. Zametki
\yr 2023
\vol 114
\issue 4
\pages 579--590
\mathnet{http://mi.mathnet.ru/mzm13961}
\crossref{https://doi.org/10.4213/mzm13961}
\transl
\jour Math. Notes
\yr 2023
\vol 114
\issue 4
\pages 573--582
\crossref{https://doi.org/10.1134/S0001434623090250}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85174582212}
Linking options:
  • https://www.mathnet.ru/eng/mzm13961
  • https://doi.org/10.4213/mzm13961
  • https://www.mathnet.ru/eng/mzm/v114/i4/p579
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:232
    Full-text PDF :25
    Russian version HTML:117
    References:25
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024