Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2024, Volume 115, Issue 2, Pages 245–256
DOI: https://doi.org/10.4213/mzm13959
(Mi mzm13959)
 

Bernstein Inequality for the Riesz Derivative of Order $0<\alpha<1$ of Entire Functions of Exponential Type in the Uniform Norm

A. O. Leont'eva

Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
References:
Abstract: We consider Bernstein's inequality for the Riesz derivative of order $0<\alpha<1$ of entire functions of exponential type in the uniform norm on the real line. For this operator, the corresponding interpolation formula is obtained; this formula has nonequidistant nodes. Using this formula, the sharp Bernstein inequality is obtained for all $0<\alpha<1$; namely, the extremal entire function and the sharp constant are written out.
Keywords: entire functions of exponential type, Riesz derivative, Bernstein inequality, uniform norm, Bessel function.
Funding agency Grant number
Russian Science Foundation 22-21-00526
This work was financially supported by the Russian Science Foundation, project no. 22-21-00526, https://rscf.ru/en/project/22-21-00526/.
Received: 23.03.2023
Revised: 03.07.2023
English version:
Mathematical Notes, 2024, Volume 115, Issue 2, Pages 205–214
DOI: https://doi.org/10.1134/S000143462401019X
Bibliographic databases:
Document Type: Article
UDC: 517.518.86
MSC: 26A33, 41A17
Language: Russian
Citation: A. O. Leont'eva, “Bernstein Inequality for the Riesz Derivative of Order $0<\alpha<1$ of Entire Functions of Exponential Type in the Uniform Norm”, Mat. Zametki, 115:2 (2024), 245–256; Math. Notes, 115:2 (2024), 205–214
Citation in format AMSBIB
\Bibitem{Leo24}
\by A.~O.~Leont'eva
\paper Bernstein Inequality for the Riesz Derivative of Order $0<\alpha<1$ of Entire Functions of Exponential Type in the Uniform Norm
\jour Mat. Zametki
\yr 2024
\vol 115
\issue 2
\pages 245--256
\mathnet{http://mi.mathnet.ru/mzm13959}
\crossref{https://doi.org/10.4213/mzm13959}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4734356}
\transl
\jour Math. Notes
\yr 2024
\vol 115
\issue 2
\pages 205--214
\crossref{https://doi.org/10.1134/S000143462401019X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85190878501}
Linking options:
  • https://www.mathnet.ru/eng/mzm13959
  • https://doi.org/10.4213/mzm13959
  • https://www.mathnet.ru/eng/mzm/v115/i2/p245
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:133
    Full-text PDF :2
    Russian version HTML:6
    References:33
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024