Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1998, Volume 64, Issue 2, Pages 273–284
DOI: https://doi.org/10.4213/mzm1395
(Mi mzm1395)
 

This article is cited in 7 scientific papers (total in 7 papers)

Criterion for the algebraic independence of values of hypergeometric $E$-functions (even case)

V. Kh. Salikhov

Bryansk State Technical University
Full-text PDF (233 kB) Citations (7)
References:
Abstract: For the hypergeometric function
\begin{gather*} \varphi_{\overline\lambda}(z)=\sum_{n=0}^\infty\frac 1{(\lambda_1+1)_n\dotsb(\lambda_t+1)_n}\Bigl(\frac zt\Bigr)^{tn}, \qquad \overline\lambda=(\lambda_1,\dots,\lambda_t), \\ \lambda_j\in\mathbb Q\setminus\{-1,-2,\dots\}, \qquad j=1,\dots,t, \end{gather*}
satisfying a linear differential equation of order $t$, for the case of an event prime to 3, a criterion is obtained for the algebraic independence over $\mathbb Q$ of the numbers $\varphi_{\overline\lambda}^{(k)}(\alpha)$, $k=0,1,\dots,t-1$, where $\alpha\in\mathbb A\setminus\{0\}$. The case of odd $t$ was fully investigated in the author's previous papers.
Received: 18.06.1997
English version:
Mathematical Notes, 1998, Volume 64, Issue 2, Pages 230–239
DOI: https://doi.org/10.1007/BF02310310
Bibliographic databases:
UDC: 511.36
Language: Russian
Citation: V. Kh. Salikhov, “Criterion for the algebraic independence of values of hypergeometric $E$-functions (even case)”, Mat. Zametki, 64:2 (1998), 273–284; Math. Notes, 64:2 (1998), 230–239
Citation in format AMSBIB
\Bibitem{Sal98}
\by V.~Kh.~Salikhov
\paper Criterion for the algebraic independence of values of hypergeometric $E$-functions (even case)
\jour Mat. Zametki
\yr 1998
\vol 64
\issue 2
\pages 273--284
\mathnet{http://mi.mathnet.ru/mzm1395}
\crossref{https://doi.org/10.4213/mzm1395}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1680929}
\zmath{https://zbmath.org/?q=an:0930.11057}
\transl
\jour Math. Notes
\yr 1998
\vol 64
\issue 2
\pages 230--239
\crossref{https://doi.org/10.1007/BF02310310}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000078147600031}
Linking options:
  • https://www.mathnet.ru/eng/mzm1395
  • https://doi.org/10.4213/mzm1395
  • https://www.mathnet.ru/eng/mzm/v64/i2/p273
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:310
    Full-text PDF :182
    References:41
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024