Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2023, Volume 114, Issue 2, Pages 181–194
DOI: https://doi.org/10.4213/mzm13933
(Mi mzm13933)
 

On the Monopolist Problem and Its Dual

T. V. Bogachev, A. V. Kolesnikov

HSE University, Moscow
References:
Abstract: In this paper, we study the functional $\Phi$ that arises in numerous economic applications, in particular, in the monopolist problem. A special feature of these problems is that the domains of such functionals are nonclassical (in our case, increasing convex functions). We use an appropriate minimax theorem to prove the duality relation for $\Phi$. In particular, an important corollary is obtained stating that the dual functional (defined on a space of measures and known as the "Beckmann functional) attains its minimum. The present approach also provides simpler proofs of some previously known results.
Keywords: monopolist problem, Dirichlet functional, minimax principle.
Funding agency Grant number
HSE Basic Research Program
Russian Science Foundation 22-21-00566
The work was implemented in the framework of the Basic Research Program at the National Research University Higher School of Economics. This work was financially supported by the Russian Science Foundation, project 22-21-00566, https://rscf.ru/en/project/22-21-00566/.
Received: 22.02.2023
English version:
Mathematical Notes, 2023, Volume 114, Issue 2, Pages 147–158
DOI: https://doi.org/10.1134/S0001434623070167
Bibliographic databases:
Document Type: Article
UDC: 517.51+519.86+517.97
MSC: 49Q22, 28A33, 28A99
Language: Russian
Citation: T. V. Bogachev, A. V. Kolesnikov, “On the Monopolist Problem and Its Dual”, Mat. Zametki, 114:2 (2023), 181–194; Math. Notes, 114:2 (2023), 147–158
Citation in format AMSBIB
\Bibitem{BogKol23}
\by T.~V.~Bogachev, A.~V.~Kolesnikov
\paper On the Monopolist Problem and Its Dual
\jour Mat. Zametki
\yr 2023
\vol 114
\issue 2
\pages 181--194
\mathnet{http://mi.mathnet.ru/mzm13933}
\crossref{https://doi.org/10.4213/mzm13933}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=412438}
\transl
\jour Math. Notes
\yr 2023
\vol 114
\issue 2
\pages 147--158
\crossref{https://doi.org/10.1134/S0001434623070167}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85168562086}
Linking options:
  • https://www.mathnet.ru/eng/mzm13933
  • https://doi.org/10.4213/mzm13933
  • https://www.mathnet.ru/eng/mzm/v114/i2/p181
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:211
    Full-text PDF :30
    Russian version HTML:132
    References:32
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024