Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2023, Volume 114, Issue 5, paper published in the English version journal (Mi mzm13919)  

Papers published in the English version of the journal

On Prime Primitive Roots of $2^{k}p+1$

S. Filipovski

University of Primorska, Koper, Slovenia
Abstract: A prime $p$ is a Sophie Germain prime if $2p+1$ is prime as well. An integer $a$ that is coprime to a positive integer $n>1$ is a primitive root of $n$ if the order of $a$ modulo $n$ is $\phi(n).$ Ramesh and Makeshwari proved that, if $p$ is a prime primitive root of $2p+1$, then $p$ is a Sophie Germain prime. Since there exist primes $p$ that are primitive roots of $2p+1$, in this note we consider the following general problem: For what primes $p$ and positive integers $k>1$, is $p$ a primitive root of $2^{k}p+1$? We prove that it is possible only if $(p,k)\in \{(2,2), (3,3), (3,4), (5,4)\}.$
Keywords: prime, Sophie Germain prime, primitive root.
Funding agency Grant number
Slovenian Research Agency J1-9110
J1-1695
This work was supported in part by the Slovenian Research Agency (research program P1-0285 and research projects J1-9110 and J1-1695).
Received: 11.02.2023
Revised: 02.05.2023
English version:
Mathematical Notes, 2023, Volume 114, Issue 5, Pages 776–778
DOI: https://doi.org/10.1134/S0001434623110123
Bibliographic databases:
Document Type: Article
MSC: 11A07, 11A41, 11A51
Language: English
Citation: S. Filipovski, “On Prime Primitive Roots of $2^{k}p+1$”, Math. Notes, 114:5 (2023), 776–778
Citation in format AMSBIB
\Bibitem{Fil23}
\by S.~Filipovski
\paper On Prime Primitive Roots of $2^{k}p+1$
\jour Math. Notes
\yr 2023
\vol 114
\issue 5
\pages 776--778
\mathnet{http://mi.mathnet.ru/mzm13919}
\crossref{https://doi.org/10.1134/S0001434623110123}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85187675892}
Linking options:
  • https://www.mathnet.ru/eng/mzm13919
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:38
    References:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024