Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2023, Volume 114, Issue 5, Pages 669–678
DOI: https://doi.org/10.4213/mzm13912
(Mi mzm13912)
 

Finite Solvable Groups in Which the $\sigma$-Quasinormality of Subgroups is a Transitive Relation

Ch. Wana, Guo Wen Bina, I. N. Safonovab, A. N. Skibac

a School of Science, Hainan University
b Belarusian State University, Minsk
c Gomel State University named after Francisk Skorina
References:
Abstract: Let $\sigma=\{\sigma_{i} \mid i\in I\}$ be a partition of the set of all primes, and let $G$ be a finite group. The group $G$ is said to be $\sigma$-primary if $G$ is a $\sigma_{i}$-group for some $i\in I$ and $\sigma$-complete if $G$ has a Hall $\sigma_{i}$-subgroup for each $i\in I$. A subgroup $A$ of $G$ is (i) $\sigma$-subnormal in $G$ if it has a subgroup series $A=A_{0} \leq A_{1} \leq \dotsb \leq A_{n}=G$ such that either $A_{i-1} \trianglelefteq A_{i}$ or $A_{i}/(A_{i-1})_{A_{i}}$ is ${\sigma}$-primary for each $i=1, \dots, n$; (ii) modular in $G$ if (1) $\langle X, A \cap Z \rangle=\langle X, A \rangle \cap Z$ for all $X \leq G, Z \leq G$ such that $X \leq Z$ and (2) $\langle A, Y \cap Z \rangle=\langle A, Y \rangle \cap Z$ for all $Y \leq G, Z \leq G$ such that $A \leq Z$; (iii) $\sigma$-quasinormal in $G$ if $A$ is $\sigma$-subnormal and modular in $G$. Finite solvable groups in which the $\sigma$-quasinormality of subgroups is a transitive relation are described. Some known results are generalized.
Keywords: finite group, solvable group, $\sigma$-quasinormal subgroup, $M$-group, modular subgroup.
Funding agency Grant number
National Natural Science Foundation of China 12171126
Hainan Provincial Natural Science Foundation of China 621RC510
Belarusian Republican Foundation for Fundamental Research Ф23РНФ-237
Ministry of Education of the Republic of Belarus 20211328
20211778
This work was supported by the National Natural Science Foundation of China (grant no. 12171126), by the Natural Science Foundation of Hainan Province (grant no. 621RC510), by the Belarusian Republican Foundation for Fundamental Research (grant no. F23RNF-237), and by the Ministry of Education of the Republic of Belarus (project nos. 20211328 and 20211778).
Received: 21.03.2023
Revised: 20.04.2023
English version:
Mathematical Notes, 2023, Volume 114, Issue 5, Pages 1021–1028
DOI: https://doi.org/10.1134/S0001434623110330
Bibliographic databases:
Document Type: Article
UDC: 517.957
MSC: 20D10, 20D15, 20D30
Language: Russian
Citation: Ch. Wan, Guo Wen Bin, I. N. Safonova, A. N. Skiba, “Finite Solvable Groups in Which the $\sigma$-Quasinormality of Subgroups is a Transitive Relation”, Mat. Zametki, 114:5 (2023), 669–678; Math. Notes, 114:5 (2023), 1021–1028
Citation in format AMSBIB
\Bibitem{WanGuoSaf23}
\by Ch.~Wan, Guo~Wen~Bin, I.~N.~Safonova, A.~N.~Skiba
\paper Finite Solvable Groups in Which the $\sigma$-Quasinormality of Subgroups is a Transitive Relation
\jour Mat. Zametki
\yr 2023
\vol 114
\issue 5
\pages 669--678
\mathnet{http://mi.mathnet.ru/mzm13912}
\crossref{https://doi.org/10.4213/mzm13912}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4716478}
\transl
\jour Math. Notes
\yr 2023
\vol 114
\issue 5
\pages 1021--1028
\crossref{https://doi.org/10.1134/S0001434623110330}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85149735583}
Linking options:
  • https://www.mathnet.ru/eng/mzm13912
  • https://doi.org/10.4213/mzm13912
  • https://www.mathnet.ru/eng/mzm/v114/i5/p669
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:148
    Full-text PDF :9
    Russian version HTML:27
    References:37
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024