Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2024, Volume 115, Issue 6, paper published in the English version journal (Mi mzm13911)  

Papers published in the English version of the journal

Commuting Jordan Derivations on Triangular Rings Are Zero

A. Hosseinia, W. Jingb

a Kashmar Higher Education Institute, Kashmar, Iran
b Department of Mathematics and Computer Science, Fayetteville State University, Fayetteville, NC, USA
Abstract: The main purpose of this article is to show that every commuting Jordan derivation on triangular rings (unital or not) is identically zero. Using this result, we prove that if $\mathcal{A}$ is a $2$-torsion free ring that is either semiprime or satisfies Condition (P), then, under certain conditions, every commuting Jordan derivation of $\mathcal{A}$ into itself is identically zero.
Keywords: Jordan derivation, commuting map, left (right) Jordan derivation, triangular ring.
Received: 31.01.2023
Revised: 12.02.2024
English version:
Mathematical Notes, 2024, Volume 115, Issue 6, Pages 1006–1016
DOI: https://doi.org/10.1134/S0001434624050353
Bibliographic databases:
Document Type: Article
MSC: 16W25; 16N60, 15A78
Language: English
Citation: A. Hosseini, W. Jing, “Commuting Jordan Derivations on Triangular Rings Are Zero”, Math. Notes, 115:6 (2024), 1006–1016
Citation in format AMSBIB
\Bibitem{HosJin24}
\by A.~Hosseini, W.~Jing
\paper Commuting Jordan Derivations on Triangular Rings Are Zero
\jour Math. Notes
\yr 2024
\vol 115
\issue 6
\pages 1006--1016
\mathnet{http://mi.mathnet.ru/mzm13911}
\crossref{https://doi.org/10.1134/S0001434624050353}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4781284}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85198652352}
Linking options:
  • https://www.mathnet.ru/eng/mzm13911
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024