Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2023, Volume 113, Issue 2, paper published in the English version journal (Mi mzm13905)  

This article is cited in 3 scientific papers (total in 3 papers)

Papers published in the English version of the journal

Infinitely Many Solutions for a Class of Kirchhoff Problems Involving the $p(x)$-Laplacian Operator

A. Ghanmia, L. Mbarkia, K. Saoudibc

a Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092 Tunisia
b College of Sciences at Dammam, University of Imam Abdulrahman Bin Faisal, Dammam, 31441, Saudi Arabia
c Basic and Applied Scientific Research Center, University of Imam Abdulrahman Bin Faisal, Dammam, 31441, Saudi Arabia
Citations (3)
Abstract: This article is devoted to studying a class of generalized $p(x)$-Laplacian Kirchhoff equations in the following form:
\begin{align*} \begin{cases} -M\biggl(\int_{\Omega}\frac{1}{p(x)}|\nabla u|^{p(x)}\biggr)\operatorname{div} \biggl(|\nabla u|^{p(x)-2}\nabla u\biggr)=\lambda |u|^{r(x)-2}u +f(x,u) &\text{in }\Omega, \\ u=0 &\text{on }\partial\Omega, \end{cases} \end{align*}
where $\Omega$ is a bounded domain of $\mathbb{R}^N (N\geq 2)$ with smooth boundary $\partial\Omega$$\lambda>0$, and $p$ and $r$, are two continuous functions in $\overline{\Omega}$. Using variational methods combined with some properties of the generalized Sobolev spaces, under appropriate assumptions on $f$ and $M$, we obtain a number of results on the existence of solutions. In addition, we show the existence of infinitely many solutions in the case when $f$ satisfies the evenness condition.
Keywords: $p(x)$-Laplacian operator, variational methods, $p(x)$-Kirchhoff problem.
Received: 14.03.2022
English version:
Mathematical Notes, 2023, Volume 113, Issue 2, Pages 172–181
DOI: https://doi.org/10.1134/S0001434623010200
Bibliographic databases:
Document Type: Article
Language: English
Citation: A. Ghanmi, L. Mbarki, K. Saoudi, “Infinitely Many Solutions for a Class of Kirchhoff Problems Involving the $p(x)$-Laplacian Operator”, Math. Notes, 113:2 (2023), 172–181
Citation in format AMSBIB
\Bibitem{GhaMbaSao23}
\by A.~Ghanmi, L.~Mbarki, K.~Saoudi
\paper Infinitely Many Solutions for a Class of Kirchhoff Problems
Involving the
$p(x)$-Laplacian Operator
\jour Math. Notes
\yr 2023
\vol 113
\issue 2
\pages 172--181
\mathnet{http://mi.mathnet.ru/mzm13905}
\crossref{https://doi.org/10.1134/S0001434623010200}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4565278}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85150207006}
Linking options:
  • https://www.mathnet.ru/eng/mzm13905
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:82
    References:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024