Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2023, Volume 114, Issue 6, Pages 873–893
DOI: https://doi.org/10.4213/mzm13904
(Mi mzm13904)
 

This article is cited in 4 scientific papers (total in 4 papers)

Continued Fractions and the Classification Problem for Elliptic Fields Over Quadratic Fields of Constants

G. V. Fedorov

University of Science and Technology "Sirius", Sochi
Full-text PDF (627 kB) Citations (4)
References:
Abstract: The theory of periodicity of functional continued fractions has found deep applications to the problem of finding and constructing fundamental units and $S$-units, the problem of describing points of finite order on elliptic curves, and the torsion problem in Jacobians of hyperelliptic curves. Functional continued fractions are also of interest from the point of view of arithmetic applications, in particular, to solving norm equations or Pell-type functional equations. In this paper, given any quadratic number field $K$, all square-free fourth-degree polynomials $f(x) \in K[x]$ are described such that $\sqrt{f}$ has periodic continued fraction expansion in the field $K((x))$ of formal power series and the elliptic field $L=K(x)(\sqrt{f})$ has a fundamental $S$-unit of degree $m$, $2 \le m \le 12$, $m \ne 11$, where the set $S$ consists of two conjugate valuations defined on $L$ and related to the uniformizing element $x$ of the field $K(x)$.
Keywords: continued fraction, hyperelliptic curve, fundamental unit, modular curve, divisor class group, torsion subgroup in Jacobian.
Funding agency Grant number
Russian Science Foundation 22-71-00101
This work was financially supported by the Russian Science Foundation, project 22-71-00101, https://rscf.ru/en/project/22-71-00101/.
Received: 28.01.2023
Revised: 05.07.2023
English version:
Mathematical Notes, 2023, Volume 114, Issue 6, Pages 1195–1211
DOI: https://doi.org/10.1134/S0001434623110512
Bibliographic databases:
Document Type: Article
UDC: 511.6
Language: Russian
Citation: G. V. Fedorov, “Continued Fractions and the Classification Problem for Elliptic Fields Over Quadratic Fields of Constants”, Mat. Zametki, 114:6 (2023), 873–893; Math. Notes, 114:6 (2023), 1195–1211
Citation in format AMSBIB
\Bibitem{Fed23}
\by G.~V.~Fedorov
\paper Continued Fractions and the Classification Problem for Elliptic Fields Over Quadratic Fields of Constants
\jour Mat. Zametki
\yr 2023
\vol 114
\issue 6
\pages 873--893
\mathnet{http://mi.mathnet.ru/mzm13904}
\crossref{https://doi.org/10.4213/mzm13904}
\transl
\jour Math. Notes
\yr 2023
\vol 114
\issue 6
\pages 1195--1211
\crossref{https://doi.org/10.1134/S0001434623110512}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85187864772}
Linking options:
  • https://www.mathnet.ru/eng/mzm13904
  • https://doi.org/10.4213/mzm13904
  • https://www.mathnet.ru/eng/mzm/v114/i6/p873
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025