Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2023, Volume 114, Issue 5, Pages 773–779
DOI: https://doi.org/10.4213/mzm13894
(Mi mzm13894)
 

This article is cited in 1 scientific paper (total in 1 paper)

Embedding of Free Nilpotent (Metabelian) Groups in Partially Commutative Nilpotent (Metabelian) Groups

V. A. Roman'kov

Omsk Branch of Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (526 kB) Citations (1)
References:
Abstract: An algorithm is presented that determines the maximum rank of a free nilpotent metabelian or, respectively, nilpotent group isomorphically embeddable into a given partially commutative nilpotent group of the same degree of nilpotency. It is shown how these embeddings are realized.
Keywords: nilpotent group, metabelian group, partially commutative group, free group, embedding.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0003
The work was carried out within the framework of the State Assignment of Sobolev Institute of Mathematics, Siberian Branch of Russian Academy of Sciences, project FWNF-2022-0003.
Received: 17.01.2023
Revised: 17.04.2023
English version:
Mathematical Notes, 2023, Volume 114, Issue 5, Pages 914–919
DOI: https://doi.org/10.1134/S0001434623110263
Bibliographic databases:
Document Type: Article
UDC: 512.54
MSC: 20E07; 20F16; 20F18
Language: Russian
Citation: V. A. Roman'kov, “Embedding of Free Nilpotent (Metabelian) Groups in Partially Commutative Nilpotent (Metabelian) Groups”, Mat. Zametki, 114:5 (2023), 773–779; Math. Notes, 114:5 (2023), 914–919
Citation in format AMSBIB
\Bibitem{Rom23}
\by V.~A.~Roman'kov
\paper Embedding of Free Nilpotent~(Metabelian) Groups in Partially Commutative Nilpotent (Metabelian) Groups
\jour Mat. Zametki
\yr 2023
\vol 114
\issue 5
\pages 773--779
\mathnet{http://mi.mathnet.ru/mzm13894}
\crossref{https://doi.org/10.4213/mzm13894}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4716485}
\transl
\jour Math. Notes
\yr 2023
\vol 114
\issue 5
\pages 914--919
\crossref{https://doi.org/10.1134/S0001434623110263}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85187688761}
Linking options:
  • https://www.mathnet.ru/eng/mzm13894
  • https://doi.org/10.4213/mzm13894
  • https://www.mathnet.ru/eng/mzm/v114/i5/p773
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:116
    Full-text PDF :8
    Russian version HTML:28
    References:21
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024