|
This article is cited in 3 scientific papers (total in 3 papers)
Behavior of Solutions to the Fuzzy Difference Equation $z_{n+1}=A+\dfrac{B}{z_{n-m}}$
I. Yalcinkayaa, H. El-Metwallyb, D. T. Tollua, H. Ahmadc a Necmettin Erbakan University
b Mansoura University
c Istanbul Ticaret University
Abstract:
In this paper, we investigate the existence, the boundedness, the asymptotic behavior, and the oscillatory behavior of the positive solutions of the fuzzy difference equation $$ z_{n+1}=A+\frac{B}{z_{n-m}}\,, $$ where $n\in\mathbb{N}_{0}=\mathbb{N}\cup\{0\}$, $(z_{n})$ is a sequence of positive fuzzy numbers, $A$, $B$, and the initial conditions $z_{-j}$, $j=1, 2,\dots,m$, are positive fuzzy numbers, and $m$ is a positive integer.
Keywords:
fuzzy number, $\alpha$-cut, fuzzy difference equations, boundedness, convergence.
Received: 12.04.2021 Revised: 24.01.2022
Citation:
I. Yalcinkaya, H. El-Metwally, D. T. Tollu, H. Ahmad, “Behavior of Solutions to the Fuzzy Difference Equation $z_{n+1}=A+\dfrac{B}{z_{n-m}}$”, Mat. Zametki, 113:2 (2023), 295–307; Math. Notes, 113:2 (2023), 292–302
Linking options:
https://www.mathnet.ru/eng/mzm13886https://doi.org/10.4213/mzm13886 https://www.mathnet.ru/eng/mzm/v113/i2/p295
|
Statistics & downloads: |
Abstract page: | 188 | Full-text PDF : | 22 | Russian version HTML: | 113 | References: | 45 | First page: | 6 |
|