Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2023, Volume 114, Issue 3, Pages 339–346
DOI: https://doi.org/10.4213/mzm13875
(Mi mzm13875)
 

Uniform Convergence of Sine Series with Fractional-Monotone Coefficients

M. I. Dyachenkoab

a Lomonosov Moscow State University
b Moscow Center for Fundamental and Applied Mathematics
References:
Abstract: We study how the well-known criterion for the uniform convergence of a sine series with monotone coefficients changes if, instead of monotonicity, one imposes the condition of $\alpha$-monotonicity with $0<\alpha <1$. Moreover, we obtain an addition to the well-known Kolmogorov theorem on the integrability of the sum of a cosine series with convex coefficients tending to zero.
Keywords: trigonometric series, uniform convergence, Cesaro numbers.
Funding agency Grant number
Russian Science Foundation 22-21-00545
This work was carried out at Lomonosov Moscow State University and financially supported by the Russian Science Foundation, project 22-21-00545, https://rscf.ru/en/project/22-21-00545/.
Received: 09.01.2023
Revised: 23.03.2023
English version:
Mathematical Notes, 2023, Volume 114, Issue 3, Pages 296–302
DOI: https://doi.org/10.1134/S000143462309002X
Bibliographic databases:
Document Type: Article
UDC: 517.52
Language: Russian
Citation: M. I. Dyachenko, “Uniform Convergence of Sine Series with Fractional-Monotone Coefficients”, Mat. Zametki, 114:3 (2023), 339–346; Math. Notes, 114:3 (2023), 296–302
Citation in format AMSBIB
\Bibitem{Dya23}
\by M.~I.~Dyachenko
\paper Uniform Convergence of Sine Series with Fractional-Monotone Coefficients
\jour Mat. Zametki
\yr 2023
\vol 114
\issue 3
\pages 339--346
\mathnet{http://mi.mathnet.ru/mzm13875}
\crossref{https://doi.org/10.4213/mzm13875}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4658782}
\transl
\jour Math. Notes
\yr 2023
\vol 114
\issue 3
\pages 296--302
\crossref{https://doi.org/10.1134/S000143462309002X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85174713238}
Linking options:
  • https://www.mathnet.ru/eng/mzm13875
  • https://doi.org/10.4213/mzm13875
  • https://www.mathnet.ru/eng/mzm/v114/i3/p339
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025