Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2023, Volume 114, Issue 5, paper published in the English version journal (Mi mzm13838)  

Papers published in the English version of the journal

On Perfect Powers in $k$-Generalized Pell–Lucas Sequence

Z. Şiara, R. Keskinb

a Department of Mathematics, Bingöl University, Turkey
b Department of Mathematics, Sakarya University, Turkey
Abstract: Let $k\geq 2$, and let $(Q_{n}^{(k)})_{n\geq 2-k}$ be the $k$-generalized Pell sequence defined by
\begin{equation*} Q_{n}^{(k)}=2Q_{n-1}^{(k)}+Q_{n-2}^{(k)}+\cdots +Q_{n-k}^{(k)} \end{equation*}
for $n\geq 2$ with the initial conditions
\begin{equation*} Q_{-(k-2)}^{(k)}=Q_{-(k-3)}^{(k)}=\cdots =Q_{-1}^{(k)}=0,\qquad Q_{0}^{(k)}=2,Q_{1}^{(k)}=2. \end{equation*}
In this paper, we solve the Diophantine equation
\begin{equation*} Q_{n}^{(k)}=y^{m} \end{equation*}
in positive integers $n,m,y,k$ with $m,y,k\geq 2$. We show that all solutions $(n,m,y)$ of this equation in positive integers $n,m,y,k$ such that $2\leq y\leq 100$ are given by $(n,m,y)=(3,2,4),(3,4,2)$ for $k\geq 3$. Namely, $Q_{3}^{(k)}=16=2^{4}=4^{2}$ for $k\geq 3$.
Keywords: Fibonacci and Lucas numbers, exponential Diophantine equation, linear form in logarithms, Baker's method.
Received: 05.12.2022
Revised: 28.05.2023
English version:
Mathematical Notes, 2023, Volume 114, Issue 5, Pages 936–948
DOI: https://doi.org/10.1134/S0001434623110287
Bibliographic databases:
Document Type: Article
MSC: 11B39, 11D61, 11J86
Language: English
Citation: Z. Şiar, R. Keskin, “On Perfect Powers in $k$-Generalized Pell–Lucas Sequence”, Math. Notes, 114:5 (2023), 936–948
Citation in format AMSBIB
\Bibitem{SiaKes23}
\by Z.~{\c S}iar, R.~Keskin
\paper On Perfect Powers in $k$-Generalized Pell--Lucas Sequence
\jour Math. Notes
\yr 2023
\vol 114
\issue 5
\pages 936--948
\mathnet{http://mi.mathnet.ru/mzm13838}
\crossref{https://doi.org/10.1134/S0001434623110287}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4673834}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85187905878}
Linking options:
  • https://www.mathnet.ru/eng/mzm13838
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025