Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2022, Volume 112, Issue 6, paper published in the English version journal (Mi mzm13826)  

Papers published in the English version of the journal

Pell and Pell–Lucas Numbers as Product of Two Repdigits

F. Erduvana, R. Keskinb

a MEB, Namik Kemal High School, Kocaeli, 41100 Turkey
b Sakarya University, Sakarya, 54100 Turkey
Abstract: In this study, we find all Pell and Pell–Lucas numbers that are product of two repdigits in the base $b$ for $b\in[2,10]$. It is shown that the largest Pell and Pell–Lucas numbers that can be expressed as a product of two repdigits are $P_{7}=169$ and $Q_{6}=198$, respectively. Also, we have the representations
$$ P_{7}=169=(111)_{3}\times(111)_{3}$$
and
$$ Q_{6}=198=2\times99=3\times66=6\times33=9\times22. $$
Furthermore, it is shown in the paper that the equation $P_{k}=(b^{n}-1)(b^{m}-1)$ has only the solution $(b,k,m,n)=(2,1,1,1)$ and the equation $Q_{k}=(b^{n}-1)(b^{m}-1)$ has no solution $(b,k,m,n)$ in positive integers for $2\leq$ $b\leq10$. The proofs depend on lower bounds for linear forms and some tools from Diophantine approximation.
Keywords: Pell number, Pell–Lucas number, repdigit, Diophantine equation, linear form in logarithms.
Received: 26.05.2022
English version:
Mathematical Notes, 2022, Volume 112, Issue 6, Pages 861–871
DOI: https://doi.org/10.1134/S0001434622110207
Bibliographic databases:
Document Type: Article
Language: English
Citation: F. Erduvan, R. Keskin, “Pell and Pell–Lucas Numbers as Product of Two Repdigits”, Math. Notes, 112:6 (2022), 861–871
Citation in format AMSBIB
\Bibitem{ErdKes22}
\by F.~Erduvan, R.~Keskin
\paper Pell and Pell--Lucas Numbers as Product of Two Repdigits
\jour Math. Notes
\yr 2022
\vol 112
\issue 6
\pages 861--871
\mathnet{http://mi.mathnet.ru/mzm13826}
\crossref{https://doi.org/10.1134/S0001434622110207}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4529615}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85145360665}
Linking options:
  • https://www.mathnet.ru/eng/mzm13826
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:82
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025