Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2024, Volume 115, Issue 3, paper published in the English version journal (Mi mzm13754)  

Papers published in the English version of the journal

A Note on $L^1$-Convergence of Fourier Series with Riesz Mean

H. S. Ozarslan, M. Ö. Şakar

Department of Mathematics, Erciyes University, Kayseri, Turkey
Abstract: In this paper, the problem of $L^1$-convergence of Fourier series with quasi-monotone coefficients is handled by using the $(\bar{N},p_n)$-mean. Also, an example is given about the Fourier series of a signal (function) $f$ and its $(\bar{N},p_n)$ mean.
Keywords: Dirichlet kernel, Fejer sum, Fourier series, $L^1$-convergence, quasi-monotone sequence, Riesz mean.
Funding agency Grant number
Erciyes University FDK-2021-8831
This work was supported by Research Fund of the Erciyes University, Project no. FDK-2021-8831.
Received: 04.10.2022
Revised: 05.05.2023
English version:
Mathematical Notes, 2024, Volume 115, Issue 3, Pages 371–377
DOI: https://doi.org/10.1134/S000143462403009X
Bibliographic databases:
Document Type: Article
MSC: 42A20, 42A32
Language: English
Citation: H. S. Ozarslan, M. Ö. Şakar, “A Note on $L^1$-Convergence of Fourier Series with Riesz Mean”, Math. Notes, 115:3 (2024), 371–377
Citation in format AMSBIB
\Bibitem{OzaSak24}
\by H.~S.~Ozarslan, M.~\"O.~{\c S}akar
\paper A Note on
$L^1$-Convergence of Fourier Series with Riesz Mean
\jour Math. Notes
\yr 2024
\vol 115
\issue 3
\pages 371--377
\mathnet{http://mi.mathnet.ru/mzm13754}
\crossref{https://doi.org/10.1134/S000143462403009X}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4767909}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85197737784}
Linking options:
  • https://www.mathnet.ru/eng/mzm13754
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024