Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2023, Volume 113, Issue 4, Pages 544–559
DOI: https://doi.org/10.4213/mzm13743
(Mi mzm13743)
 

This article is cited in 4 scientific papers (total in 4 papers)

Refinement of the Estimate for the Rate of Uniform Convergence of the Fourier Series of a Continuous Periodic Function of Bounded Variation

A. Yu. Popovab, T. Yu. Semenovaab

a Lomonosov Moscow State University
b Moscow Center for Fundamental and Applied Mathematics
Full-text PDF (572 kB) Citations (4)
References:
Abstract: An estimate for the convergence rate of the Fourier series of a continuous periodic function of bounded variation is refined.
Keywords: function of bounded variation, convergence rate of the Fourier series.
Funding agency Grant number
Russian Science Foundation 22-11-00129
This work was supported by the Russian Science Foundation under grant no. 22-11-00129 and carried out at Moscow State University.
Received: 27.09.2022
English version:
Mathematical Notes, 2023, Volume 113, Issue 4, Pages 525–537
DOI: https://doi.org/10.1134/S0001434623030240
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: A. Yu. Popov, T. Yu. Semenova, “Refinement of the Estimate for the Rate of Uniform Convergence of the Fourier Series of a Continuous Periodic Function of Bounded Variation”, Mat. Zametki, 113:4 (2023), 544–559; Math. Notes, 113:4 (2023), 525–537
Citation in format AMSBIB
\Bibitem{PopSem23}
\by A.~Yu.~Popov, T.~Yu.~Semenova
\paper Refinement of the Estimate for the Rate of Uniform Convergence
of the Fourier Series of a Continuous Periodic Function of Bounded Variation
\jour Mat. Zametki
\yr 2023
\vol 113
\issue 4
\pages 544--559
\mathnet{http://mi.mathnet.ru/mzm13743}
\crossref{https://doi.org/10.4213/mzm13743}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4582576}
\transl
\jour Math. Notes
\yr 2023
\vol 113
\issue 4
\pages 525--537
\crossref{https://doi.org/10.1134/S0001434623030240}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85153313896}
Linking options:
  • https://www.mathnet.ru/eng/mzm13743
  • https://doi.org/10.4213/mzm13743
  • https://www.mathnet.ru/eng/mzm/v113/i4/p544
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:233
    Full-text PDF :27
    Russian version HTML:162
    References:40
    First page:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024