Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2023, Volume 113, Issue 6, Pages 820–826
DOI: https://doi.org/10.4213/mzm13735
(Mi mzm13735)
 

On Nonfree Actions of Commuting Involutions on Manifolds

D. V. Gugnin

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: A new lower bound is obtained relating the rational cohomological length of the base and that of the total space of branched coverings of orientable manifolds for the case in which the branched covering is a projection onto the quotient space by the action of commuting involutions on the total space. This bound is much stronger than the classical Burstein–Edmonds 1978 bound which holds for arbitrary branched coverings of orientable manifolds.
In the framework of the theory of branched coverings, results are obtained that are motivated by the problems concerning $n$-valued topological groups. We explicitly construct $m-1$ commuting involutions acting as automorphisms on the torus $T^m$ with the orbit space $\mathbb{R}P^m$ for any odd $m\ge 3$. By the construction thus obtained, the manifold $\mathbb{R}P^m$ carries the structure of an $2^{m-1}$-valued Abelian topological group for all odd $m\ge 3$.
Keywords: actions of finite groups, cohomological length, branched coverings of manifolds, $n$-valued groups.
Funding agency Grant number
Russian Science Foundation 20-11-19998
This work was supported by the Russian Science Foundation under grant no. 20-11-19998, https://rscf.ru/project/20-11-19998/.
Received: 20.09.2022
Revised: 04.12.2022
English version:
Mathematical Notes, 2023, Volume 113, Issue 6, Pages 770–775
DOI: https://doi.org/10.1134/S0001434623050188
Bibliographic databases:
Document Type: Article
UDC: 515.14
MSC: 57N65, 57S17
Language: Russian
Citation: D. V. Gugnin, “On Nonfree Actions of Commuting Involutions on Manifolds”, Mat. Zametki, 113:6 (2023), 820–826; Math. Notes, 113:6 (2023), 770–775
Citation in format AMSBIB
\Bibitem{Gug23}
\by D.~V.~Gugnin
\paper On Nonfree Actions of Commuting Involutions on Manifolds
\jour Mat. Zametki
\yr 2023
\vol 113
\issue 6
\pages 820--826
\mathnet{http://mi.mathnet.ru/mzm13735}
\crossref{https://doi.org/10.4213/mzm13735}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4602440}
\transl
\jour Math. Notes
\yr 2023
\vol 113
\issue 6
\pages 770--775
\crossref{https://doi.org/10.1134/S0001434623050188}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85163212349}
Linking options:
  • https://www.mathnet.ru/eng/mzm13735
  • https://doi.org/10.4213/mzm13735
  • https://www.mathnet.ru/eng/mzm/v113/i6/p820
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:161
    Full-text PDF :6
    Russian version HTML:75
    References:21
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024