Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2022, Volume 112, Issue 4, Pages 601–612
DOI: https://doi.org/10.4213/mzm13732
(Mi mzm13732)
 

This article is cited in 7 scientific papers (total in 7 papers)

Periodic Contrast Structures in the Reaction-Diffusion Problem with Fast Response and Weak Diffusion

N. N. Nefedov

Lomonosov Moscow State University
Full-text PDF (494 kB) Citations (7)
References:
Abstract: In this paper, we study a new class of time-periodic solutions with interior transition layer of reaction-advection-diffusion equations in the case of a fast reaction and a small diffusion. We consider the case of discontinuous sources (i.e., the nonlinearity describing the interaction and reaction) for a certain value of the unknown function that arise in a number of relevant applications. An existence theorem is proved, asymptotic approximations are constructed, and the asymptotic Lyapunov stability of such solutions as solutions of the corresponding initial-boundary-value problems is established.
Keywords: reaction-advection-diffusion type equations, periodic parabolic boundary-value problems, singular perturbations, Burgers equations with modular advection, discontinuous sources, asymptotic method of differential inequalities, interior transition layer.
Funding agency Grant number
Russian Science Foundation 18-11-00042
This work was supported by the Russian Science Foundation under grant 18-11-00042.
Received: 15.05.2022
English version:
Mathematical Notes, 2022, Volume 112, Issue 4, Pages 588–597
DOI: https://doi.org/10.1134/S0001434622090279
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: Russian
Citation: N. N. Nefedov, “Periodic Contrast Structures in the Reaction-Diffusion Problem with Fast Response and Weak Diffusion”, Mat. Zametki, 112:4 (2022), 601–612; Math. Notes, 112:4 (2022), 588–597
Citation in format AMSBIB
\Bibitem{Nef22}
\by N.~N.~Nefedov
\paper Periodic Contrast Structures in the Reaction-Diffusion Problem with Fast Response and Weak Diffusion
\jour Mat. Zametki
\yr 2022
\vol 112
\issue 4
\pages 601--612
\mathnet{http://mi.mathnet.ru/mzm13732}
\crossref{https://doi.org/10.4213/mzm13732}
\transl
\jour Math. Notes
\yr 2022
\vol 112
\issue 4
\pages 588--597
\crossref{https://doi.org/10.1134/S0001434622090279}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85140103674}
Linking options:
  • https://www.mathnet.ru/eng/mzm13732
  • https://doi.org/10.4213/mzm13732
  • https://www.mathnet.ru/eng/mzm/v112/i4/p601
  • This publication is cited in the following 7 articles:
    1. V. S. Besov, V. I. Kachalov, “Holomorphic Regularization of Singularly Perturbed Integro-Differential Equations”, Diff Equat, 60:1 (2024), 1  crossref  mathscinet
    2. V. S Besov, V. I Kachalov, “GOLOMORFNAYa REGULYaRIZATsIYa SINGULYaRNO VOZMUShch¨ENNYKh INTEGRO-DIFFERENTsIAL'NYKh URAVNENIY”, Differencialʹnye uravneniâ, 60:1 (2024), 3  crossref
    3. D. A. Maslov, “About One Method for Numerical Solution of the Cauchy Problem for Singularly Perturbed Differential Equations”, Comput. Math. and Math. Phys., 64:5 (2024), 1029  crossref
    4. D. A Maslov, “ON A NUMERICAL METHOD FOR SOLVING THE CAUCHY PROBLEM FOR SINGULARLY PERTURBED DIFFERENTIAL EQUATIONS”, Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, 64:5 (2024), 804  crossref
    5. E. P. Kubyshkin, “Averaging Method in the Problem of Constructing Self-Oscillatory Solutions of Distributed Kinetic Systems”, Comput. Math. and Math. Phys., 64:12 (2024), 2868  crossref
    6. V. I. Kachalov, D. A. Maslov, “Small Parameter Method in the Theory of Burgers-Type Equations”, Comput. Math. and Math. Phys., 64:12 (2024), 2886  crossref
    7. V. I. Kachalov, D. A. Maslov, “Analyticity and pseudo-analyticity in the small parameter method”, Comput. Math. Math. Phys., 63:11 (2023), 1996–2004  mathnet  mathnet  crossref  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:231
    Full-text PDF :51
    References:68
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025