Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2023, Volume 113, Issue 3, Pages 374–391
DOI: https://doi.org/10.4213/mzm13716
(Mi mzm13716)
 

Enveloping of the Values of an Analytic Function Related to the Number $e$

A. B. Kostina, V. B. Sherstyukovbc

a National Engineering Physics Institute "MEPhI", Moscow
b Lomonosov Moscow State University
c Moscow Center for Fundamental and Applied Mathematics
References:
Abstract: The problem of completely describing the approximation of the number $e$ by the elements of the sequence $(1+1/m)^m$, $m\in\mathbb{N}$, is considered. To this end, the function $f(z)=\exp\{(1/z)\ln(1+z)-1\}$, which is analytic in the complex plane with a cut along the half-line $(-\infty,-1]$ of the real line, is studied in detail. We prove that the power series $1+\sum^{\infty}_{n=1}(-1)^n a_n z^n$, where all $a_n$ are positive, which represents this function on the unit disk, envelops it in the open right half-plane. This gives a series of double inequalities for the deviation $e-(1+x)^{1/x}$ on the positive half-line, which are asymptotically sharp as $x\to 0$. Integral representations of the function $f(z)$ and of the coefficients $a_n$ are obtained. They play an important role in the study. A two-term asymptotics of the coeffients $a_n$ as $n\to \infty$ is found. We show that the coefficients form a logarithmically convex completely monotone sequence. We also obtain integral expressions for the derivatives of all orders of the function $f(z)$. It turns out that $f(x)$ is completely monotone on the half-line $x>-1$. Applications and development of the results are discussed.
Keywords: number $e$, analytic function, Taylor coefficients, completely monotone sequence, completely monotone function, integral representation, enveloping series.
Received: 07.09.2022
Revised: 06.10.2022
English version:
Mathematical Notes, 2023, Volume 113, Issue 3, Pages 368–383
DOI: https://doi.org/10.1134/S0001434623030069
Bibliographic databases:
Document Type: Article
UDC: 517.547.3
PACS: 02.30.-f
MSC: 30E10
Language: Russian
Citation: A. B. Kostin, V. B. Sherstyukov, “Enveloping of the Values of an Analytic Function Related to the Number $e$”, Mat. Zametki, 113:3 (2023), 374–391; Math. Notes, 113:3 (2023), 368–383
Citation in format AMSBIB
\Bibitem{KosShe23}
\by A.~B.~Kostin, V.~B.~Sherstyukov
\paper Enveloping of the Values of an Analytic Function Related to the Number~$e$
\jour Mat. Zametki
\yr 2023
\vol 113
\issue 3
\pages 374--391
\mathnet{http://mi.mathnet.ru/mzm13716}
\crossref{https://doi.org/10.4213/mzm13716}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4582559}
\transl
\jour Math. Notes
\yr 2023
\vol 113
\issue 3
\pages 368--383
\crossref{https://doi.org/10.1134/S0001434623030069}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85160319715}
Linking options:
  • https://www.mathnet.ru/eng/mzm13716
  • https://doi.org/10.4213/mzm13716
  • https://www.mathnet.ru/eng/mzm/v113/i3/p374
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:305
    Full-text PDF :26
    Russian version HTML:211
    References:38
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024