Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2023, Volume 114, Issue 1, Pages 18–37
DOI: https://doi.org/10.4213/mzm13703
(Mi mzm13703)
 

This article is cited in 1 scientific paper (total in 1 paper)

Partial Integral Operators on Banach–Kantorovich Spaces

A. D. Arzievab, K. K. Kudaybergenovac, P. R. Oryinbaeva, A. K. Tanirbergend

a V. I. Romanovskiy Institute of Mathematcs of the Academy of Sciences of Uzbekistan
b Karakalpak State University named after Berdakh
c North Caucasus Center for Mathematical Research VSC RAS
d K. Zhubanov Aktobe Regional State University
Full-text PDF (663 kB) Citations (1)
References:
Abstract: In this paper, we study partial integral operators on Banach–Kantorovich spaces over a ring of measurable functions. We obtain a decomposition of the cyclic modular spectrum of a bounded modular linear operator on a Banach–Kantorovich space in the form of a measurable bundle of the spectrum of bounded operators on Banach spaces. The classical Banach spaces with mixed norm are endowed with the structure of Banach–Kantorovich modules. We use such representations to show that every partial integral operator on a space with a mixed norm can be represented as a measurable bundle of integral operators. In particular, we show the cyclic compactness of such operators and, as an application, prove the Fredholm $\nabla$-alternative. We also give an example of a partial integral operator with a nonempty cyclically modular discrete spectrum, while its modular discrete spectrum is an empty set.
Keywords: partial integral operator, measurable bundle of integral operators, cyclically compact operator, modular spectrum.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2022-896
This work of the second author was supported by the Ministry of Science and Higher Education of the Russian Federation (grant no. 075-02-2022-896).
Received: 03.01.2023
Revised: 31.01.2023
English version:
Mathematical Notes, 2023, Volume 114, Issue 1, Pages 15–29
DOI: https://doi.org/10.1134/S0001434623070027
Bibliographic databases:
Document Type: Article
UDC: 517.98
MSC: 46H25
Language: Russian
Citation: A. D. Arziev, K. K. Kudaybergenov, P. R. Oryinbaev, A. K. Tanirbergen, “Partial Integral Operators on Banach–Kantorovich Spaces”, Mat. Zametki, 114:1 (2023), 18–37; Math. Notes, 114:1 (2023), 15–29
Citation in format AMSBIB
\Bibitem{ArzKudOry23}
\by A.~D.~Arziev, K.~K.~Kudaybergenov, P.~R.~Oryinbaev, A.~K.~Tanirbergen
\paper Partial Integral Operators on Banach--Kantorovich Spaces
\jour Mat. Zametki
\yr 2023
\vol 114
\issue 1
\pages 18--37
\mathnet{http://mi.mathnet.ru/mzm13703}
\crossref{https://doi.org/10.4213/mzm13703}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4634768}
\transl
\jour Math. Notes
\yr 2023
\vol 114
\issue 1
\pages 15--29
\crossref{https://doi.org/10.1134/S0001434623070027}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85168627431}
Linking options:
  • https://www.mathnet.ru/eng/mzm13703
  • https://doi.org/10.4213/mzm13703
  • https://www.mathnet.ru/eng/mzm/v114/i1/p18
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025