Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2022, Volume 112, Issue 4, Pages 500–520
DOI: https://doi.org/10.4213/mzm13694
(Mi mzm13694)
 

This article is cited in 5 scientific papers (total in 5 papers)

Lauricella Function and the Conformal Mapping of Polygons

S. I. Bezrodnykh

Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Moscow
Full-text PDF (778 kB) Citations (5)
References:
Abstract: In this paper, some progress has been made in solving the problem of calculating the parameters of the Schwarz–Christoffel integral realizing a conformal mapping of a canonical domain onto a polygon. It is shown that an effective solution of this problem can be found by applying the formulas of analytic continuation of the Lauricella function $F_D^{(N)}$, which is a hypergeometric function of $N$ complex variables. Several new formulas for such a continuation of the function $F_D^{(N)}$ are presented that are oriented to the calculation of the parameters of the Schwarz–Christoffel integral in the “crowding” situation. An example of solving the parameter problem for a complicated polygon is given.
Keywords: Schwarz–Christoffel integral, hypergeometric functions of many variables, analytic continuation, crowding.
Funding agency Grant number
Russian Science Foundation 22-21-00727
This work was supported by the Russian Science Foundation under grant 22-21-00727, https:// rscf.ru/ project/22-21-00727/.
Received: 05.05.2022
English version:
Mathematical Notes, 2022, Volume 112, Issue 4, Pages 505–522
DOI: https://doi.org/10.1134/S0001434622090218
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: S. I. Bezrodnykh, “Lauricella Function and the Conformal Mapping of Polygons”, Mat. Zametki, 112:4 (2022), 500–520; Math. Notes, 112:4 (2022), 505–522
Citation in format AMSBIB
\Bibitem{Bez22}
\by S.~I.~Bezrodnykh
\paper Lauricella Function and the Conformal Mapping of Polygons
\jour Mat. Zametki
\yr 2022
\vol 112
\issue 4
\pages 500--520
\mathnet{http://mi.mathnet.ru/mzm13694}
\crossref{https://doi.org/10.4213/mzm13694}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4538786}
\transl
\jour Math. Notes
\yr 2022
\vol 112
\issue 4
\pages 505--522
\crossref{https://doi.org/10.1134/S0001434622090218}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85140307659}
Linking options:
  • https://www.mathnet.ru/eng/mzm13694
  • https://doi.org/10.4213/mzm13694
  • https://www.mathnet.ru/eng/mzm/v112/i4/p500
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:257
    Full-text PDF :55
    References:57
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024