Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2023, Volume 114, Issue 2, Pages 297–305
DOI: https://doi.org/10.4213/mzm13690
(Mi mzm13690)
 

On Hypercyclic Operators in Weighted Spaces of Infinitely Differentiable Functions

A. I. Rakhimova

Bashkir State University, Ufa
References:
Abstract: A differentiation-invariant weighted Fréchet space ${\mathcal E}(\varphi)$ of infinitely differentiable functions in ${\mathbb R}^n$ generated by a countable family $\varphi$ of continuous real-valued functions in ${\mathbb R}^n$ is considered. It is shown that, under minimal restrictions on $\varphi$, any continuous linear operator on ${\mathcal E}(\varphi)$ that is not a scalar multiple of the identity mapping and commutes with the partial differentiation operators is hypercyclic. Examples of hypercyclic operators in ${\mathcal E}(\varphi)$ are presented for cases in which the space ${\mathcal E}(\varphi)$ is translation invariant.
Keywords: infinitely differentiable functions, hypercyclic operator, convolution operator.
Received: 12.08.2022
Revised: 15.02.2023
English version:
Mathematical Notes, 2023, Volume 114, Issue 2, Pages 242–249
DOI: https://doi.org/10.1134/S0001434623070258
Bibliographic databases:
Document Type: Article
UDC: 517.55
MSC: 30E99
Language: Russian
Citation: A. I. Rakhimova, “On Hypercyclic Operators in Weighted Spaces of Infinitely Differentiable Functions”, Mat. Zametki, 114:2 (2023), 297–305; Math. Notes, 114:2 (2023), 242–249
Citation in format AMSBIB
\Bibitem{Rak23}
\by A.~I.~Rakhimova
\paper On Hypercyclic Operators in Weighted Spaces of Infinitely Differentiable Functions
\jour Mat. Zametki
\yr 2023
\vol 114
\issue 2
\pages 297--305
\mathnet{http://mi.mathnet.ru/mzm13690}
\crossref{https://doi.org/10.4213/mzm13690}
\transl
\jour Math. Notes
\yr 2023
\vol 114
\issue 2
\pages 242--249
\crossref{https://doi.org/10.1134/S0001434623070258}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85168602977}
Linking options:
  • https://www.mathnet.ru/eng/mzm13690
  • https://doi.org/10.4213/mzm13690
  • https://www.mathnet.ru/eng/mzm/v114/i2/p297
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:145
    Full-text PDF :16
    Russian version HTML:97
    References:48
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024