Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2022, Volume 112, Issue 2, paper published in the English version journal (Mi mzm13674)  

Papers published in the English version of the journal

Infinitely Many Solutions of Nonlocal Kirchhoff-Type Equations via Perturbation Methods

D. T. Luyenab

a International Center for Research and Postgraduate Training in Mathematics, Institute of Mathematics, Vietnam Academy of Science and Technology, Hanoi, 10307 Vietnam
b Department of Mathematics, Hoa Lu University, Ninhbinh, 430000 Vietnam
Abstract: We study the multiplicity of weak solutions to the boundary-value problem
\begin{alignat}{2} - M\biggl(\iint_{\mathbb R^{2N}}|u(x)-u(y)|^2 K(x-y)\,d x\,d y\biggr)\mathscr L^s_K u &= f(x,u)+ g(x,u)&\qquad &\text{in}\quad \Omega,\nonumber \\ u&=0 &\qquad &\text{in}\quad \mathbb R^N\backslash \Omega, \nonumber \end{alignat}
where $\mathscr L^s_K$ is a nonlocal operator with singular kernel $K$, $\Omega$ is a bounded domain with smooth boundary in $\mathbb{R}^N$ with dimension $N>2s$, parameter $s\in (0,1)$, $M$ is continuous function and $f(\cdot,\xi)$ is odd in $\xi$, $g(\cdot,\xi)$ is a perturbation term. By using the perturbation method of Rabinowitz, we show that there are infinitely many weak solutions to the problem.
Keywords: Kirchhoff-type problems, fractional Sobolev spaces, critical points, perturbation methods, multiple solutions.
Funding agency Grant number
International Center for Research and Postgraduate Training in Mathematics, Institute of Mathematics, Vietnam Academy of Science and Technology ICRTM04_2021.03
This research is funded by the International Center for Research and Postgraduate Training in Mathematics, Institute of Mathematics, Vietnam Academy of Science and Technology under the grant ICRTM04_2021.03.
Received: 06.08.2020
Revised: 14.02.2022
English version:
Mathematical Notes, 2022, Volume 112, Issue 2, Pages 239–250
DOI: https://doi.org/10.1134/S0001434622070276
Bibliographic databases:
Document Type: Article
Language: English
Citation: D. T. Luyen, “Infinitely Many Solutions of Nonlocal Kirchhoff-Type Equations via Perturbation Methods”, Math. Notes, 112:2 (2022), 239–250
Citation in format AMSBIB
\Bibitem{Luy22}
\by D.~T.~Luyen
\paper Infinitely Many Solutions of Nonlocal Kirchhoff-Type Equations via Perturbation Methods
\jour Math. Notes
\yr 2022
\vol 112
\issue 2
\pages 239--250
\mathnet{http://mi.mathnet.ru/mzm13674}
\crossref{https://doi.org/10.1134/S0001434622070276}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4473233}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85136628417}
Linking options:
  • https://www.mathnet.ru/eng/mzm13674
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024