Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2023, Volume 114, Issue 5, paper published in the English version journal (Mi mzm13665)  

Papers published in the English version of the journal

Banach–Mazur Distance from $\ell_p^3$ to $\ell_\infty^3$

L. Zhang, L. Meng, S. Wu

School of Mathematics, North University of China, Taiyuan
Abstract: The maximum of the Banach–Mazur distance $d_{BM}^M(X,\ell_\infty^n)$, where $X$ ranges over the set of all $n$-dimensional real Banach spaces, is difficult to compute. In fact, it is even not easy to find the maximum of $d_{BM}^M(\ell_p^n,\ell_\infty^n)$ over all $p\in [1,\infty]$. We prove that $d_{BM}^M(\ell_p^3,\ell_\infty^3)\leq 9/5$ for all $p\in[1,\infty]$. As an application, the following result related to Borsuk's partition problem in Banach spaces is obtained: any subset $A$ of $\ell_p^3$ having diameter $1$ is a union of $8$ subsets of $A$ whose diameters are at most $0.9$.
Keywords: Banach–Mazur distance, $\ell_p^{n}$ space, Borsuk's problem.
Funding agency Grant number
National Natural Science Foundation of China 12071444
12001500
Natural Science Foundation of Shanxi Province 201901D111141
202103021223191
Scientific and Technological Innovation Programs of Higher Education 2020L0290
The authors are supported by the National Natural Science Foundation of China (grant numbers 12071444 and 12001500), the Natural Science Foundation of Shanxi Province of China (grant numbers 201901D111141 and 202103021223191), and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (grant number 2020L0290).
Received: 14.07.2022
Revised: 29.12.2022
English version:
Mathematical Notes, 2023, Volume 114, Issue 5, Pages 1045–1051
DOI: https://doi.org/10.1134/S0001434623110354
Bibliographic databases:
Document Type: Article
MSC: 46B20; 46B04
Language: English
Citation: L. Zhang, L. Meng, S. Wu, “Banach–Mazur Distance from $\ell_p^3$ to $\ell_\infty^3$”, Math. Notes, 114:5 (2023), 1045–1051
Citation in format AMSBIB
\Bibitem{ZhaMenWu23}
\by L.~Zhang, L.~Meng, S.~Wu
\paper Banach--Mazur Distance from $\ell_p^3$ to $\ell_\infty^3$
\jour Math. Notes
\yr 2023
\vol 114
\issue 5
\pages 1045--1051
\mathnet{http://mi.mathnet.ru/mzm13665}
\crossref{https://doi.org/10.1134/S0001434623110354}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85187714909}
Linking options:
  • https://www.mathnet.ru/eng/mzm13665
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:35
    References:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024