Abstract:
Let $G$ be a free product of free groups with cyclic amalgamation. In this note we prove a criterion for the group $G$ to be a residually finite $p$-group. Other residual properties of the group $G$ are also established.
Citation:
D. N. Azarov, “On the residual nilpotence of free products of free groups with cyclic amalgamation”, Mat. Zametki, 64:1 (1998), 3–8; Math. Notes, 64:1 (1998), 3–7
\Bibitem{Aza98}
\by D.~N.~Azarov
\paper On the residual nilpotence of free products of free groups with cyclic amalgamation
\jour Mat. Zametki
\yr 1998
\vol 64
\issue 1
\pages 3--8
\mathnet{http://mi.mathnet.ru/mzm1366}
\crossref{https://doi.org/10.4213/mzm1366}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1694022}
\zmath{https://zbmath.org/?q=an:0922.20030}
\transl
\jour Math. Notes
\yr 1998
\vol 64
\issue 1
\pages 3--7
\crossref{https://doi.org/10.1007/BF02307189}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000078147600001}
Linking options:
https://www.mathnet.ru/eng/mzm1366
https://doi.org/10.4213/mzm1366
https://www.mathnet.ru/eng/mzm/v64/i1/p3
This publication is cited in the following 15 articles:
E.V. Sokolov, “On the residual nilpotence of generalized free products of groups”, Journal of Algebra, 657 (2024), 292
D. N. Azarov, “O pochti moschnosti grupp avtomorfizmov i rasscheplyaemykh rasshirenii”, Sib. matem. zhurn., 64:6 (2023), 1119–1130
D. N. Azarov, “On the Virtual Potency of Automorphism Groups and Split Extensions”, Sib Math J, 64:6 (2023), 1265
D. I. Moldavanskii, “Residual Nilpotence of Groups with One Defining Relation”, Math. Notes, 107:5 (2020), 820–825
E. A. Tumanova, “The root class residuality of the tree product of groups with amalgamated retracts”, Siberian Math. J., 60:4 (2019), 699–708
D. N. Azarov, “A criterion for the $\mathscr F_\pi$-residuality of free products with amalgamated cyclic subgroup of nilpotent groups of finite ranks”, Siberian Math. J., 57:3 (2016), 377–384
A. V. Rozov, E. V. Sokolov, “O nilpotentnoi approksimiruemosti svobodnykh proizvedenii nilpotentnykh grupp s tsentralnymi ob'edinennymi podgruppami”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2016, no. 6(44), 34–44
Azarov D., “Residual Properties of Generalized Free Products With Cyclic Amalgamation”, Commun. Algebr., 43:4 (2015), 1464–1471
D. N. Azarov, “O finitnoi approksimiruemosti obobschennykh svobodnykh proizvedenii grupp s tsiklicheskim ob'edineniem”, Chebyshevskii sb., 14:3 (2013), 9–19
E. V. Sokolov, “Nekotorye approksimatsionnye svoistva obobschennykh svobodnykh proizvedenii grupp”, Chebyshevskii sb., 13:1 (2012), 143–149
Bou-Rabee Kh., “Parasurface Groups”, Pac. J. Math., 248:1 (2010), 23–30
V. G. Bardakov, R. V. Mikhailov, “On the residual properties of link groups”, Siberian Math. J., 48:3 (2007), 387–394
E. V. Sokolov, “On the Approximability by Finite $p$-Groups of Free Products of Groups with Normal Amalgamation”, Math. Notes, 78:1 (2005), 114–119
E. V. Sokolov, “A Remark on Subgroup Separability in the Class of Finite $\pi$-Groups”, Math. Notes, 73:6 (2003), 855–858
E. V. Sokolov, “On the cyclic subgroup separability of free products of two groups with amalgamated subgroup”, Lobachevskii J. Math., 11 (2002), 27–38