|
Positive Solutions of Nonuniformly Elliptic Equations with Weighted Convex-Concave Nonlinearity
F. Mamedov, G. Gasymov Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences
Abstract:
The paper contains the proof of the existence of two different positive solutions of the problem $$ \frac{\partial}{\partial z_i}\biggl(a_{ij}(z) \frac{\partial u}{\partial z_j}\biggr)+v(x)u^{q-1}+ \mu u^{p-1}=0, \qquad z\in \Omega, \quad u|_{\partial\Omega}=0, $$ involving convex and concave nonlinearities, the parameter $\mu=\operatorname{const}$, and the variables $z=(x,y) \in \mathbb{R}^n \times \mathbb{R}^{N-n}$. The coefficient matrix $A=\{a_{ij}(z)\}_{i,j=1}^N$ satisfies the nonuniform ellipticity condition $$ C_1(\omega(x)|\xi|^2+|\eta|^2)\le A(z) \zeta \cdot \zeta \le C_2(\omega(x)|\xi|^2+|\eta|^2) $$ in a bounded domain $\Omega \subset \mathbb{R}^N$, $\zeta=(\xi,\eta) \in \mathbb{R}^n \times \mathbb{R}^{N-n}$, $\zeta \ne 0$. To achieve the goal, the authors consider the conditions on the range of nonlinearity exponents $q \in (2,2N/(N-2))$ and $p\in (1,N/(N-1))$ (or $p\in (1, 2)$ and the additional condition $v^{-p/(q-p)}\in L_1(\Omega)$) and $\mu \in (0,\Lambda)$ for a sufficiently small $\Lambda$; positive weight functions $v\in A_\infty$, $\omega \in A_2$ belong to the corresponding Muckenhoupt classes in the metric of $n$-dimensional Euclidean space and also the balance condition of Chanillo–Wheeden type holds.
Keywords:
nonuniformly elliptic equations, convex-concave nonlinearity, degenerate elliptic equation, Dirichlet problem, Sobolev space.
Received: 24.12.2021 Revised: 29.03.2022
Citation:
F. Mamedov, G. Gasymov, “Positive Solutions of Nonuniformly Elliptic Equations with Weighted Convex-Concave Nonlinearity”, Mat. Zametki, 112:2 (2022), 227–250; Math. Notes, 112:2 (2022), 251–270
Linking options:
https://www.mathnet.ru/eng/mzm13648https://doi.org/10.4213/mzm13648 https://www.mathnet.ru/eng/mzm/v112/i2/p227
|
|