Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2022, Volume 112, Issue 2, Pages 227–250
DOI: https://doi.org/10.4213/mzm13648
(Mi mzm13648)
 

Positive Solutions of Nonuniformly Elliptic Equations with Weighted Convex-Concave Nonlinearity

F. Mamedov, G. Gasymov

Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences
References:
Abstract: The paper contains the proof of the existence of two different positive solutions of the problem
$$ \frac{\partial}{\partial z_i}\biggl(a_{ij}(z) \frac{\partial u}{\partial z_j}\biggr)+v(x)u^{q-1}+ \mu u^{p-1}=0, \qquad z\in \Omega, \quad u|_{\partial\Omega}=0, $$
involving convex and concave nonlinearities, the parameter $\mu=\operatorname{const}$, and the variables $z=(x,y) \in \mathbb{R}^n \times \mathbb{R}^{N-n}$. The coefficient matrix $A=\{a_{ij}(z)\}_{i,j=1}^N$ satisfies the nonuniform ellipticity condition
$$ C_1(\omega(x)|\xi|^2+|\eta|^2)\le A(z) \zeta \cdot \zeta \le C_2(\omega(x)|\xi|^2+|\eta|^2) $$
in a bounded domain $\Omega \subset \mathbb{R}^N$, $\zeta=(\xi,\eta) \in \mathbb{R}^n \times \mathbb{R}^{N-n}$, $\zeta \ne 0$. To achieve the goal, the authors consider the conditions on the range of nonlinearity exponents $q \in (2,2N/(N-2))$ and $p\in (1,N/(N-1))$ (or $p\in (1, 2)$ and the additional condition $v^{-p/(q-p)}\in L_1(\Omega)$) and $\mu \in (0,\Lambda)$ for a sufficiently small $\Lambda$; positive weight functions $v\in A_\infty$, $\omega \in A_2$ belong to the corresponding Muckenhoupt classes in the metric of $n$-dimensional Euclidean space and also the balance condition of Chanillo–Wheeden type holds.
Keywords: nonuniformly elliptic equations, convex-concave nonlinearity, degenerate elliptic equation, Dirichlet problem, Sobolev space.
Funding agency Grant number
Fund of the State Oil Company of Azerbaijan Republic (SOCAR) 19 LR-AMEA
The work of the first author was supported in part by LR-AMEA under grant 19.
Received: 24.12.2021
Revised: 29.03.2022
English version:
Mathematical Notes, 2022, Volume 112, Issue 2, Pages 251–270
DOI: https://doi.org/10.1134/S0001434622070288
Bibliographic databases:
Document Type: Article
UDC: 517.956.226
Language: Russian
Citation: F. Mamedov, G. Gasymov, “Positive Solutions of Nonuniformly Elliptic Equations with Weighted Convex-Concave Nonlinearity”, Mat. Zametki, 112:2 (2022), 227–250; Math. Notes, 112:2 (2022), 251–270
Citation in format AMSBIB
\Bibitem{MamGas22}
\by F.~Mamedov, G.~Gasymov
\paper Positive Solutions of Nonuniformly Elliptic Equations with Weighted Convex-Concave Nonlinearity
\jour Mat. Zametki
\yr 2022
\vol 112
\issue 2
\pages 227--250
\mathnet{http://mi.mathnet.ru/mzm13648}
\crossref{https://doi.org/10.4213/mzm13648}
\transl
\jour Math. Notes
\yr 2022
\vol 112
\issue 2
\pages 251--270
\crossref{https://doi.org/10.1134/S0001434622070288}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85136670280}
Linking options:
  • https://www.mathnet.ru/eng/mzm13648
  • https://doi.org/10.4213/mzm13648
  • https://www.mathnet.ru/eng/mzm/v112/i2/p227
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024