Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2024, Volume 115, Issue 1, Pages 3–13
DOI: https://doi.org/10.4213/mzm13623
(Mi mzm13623)
 

This article is cited in 1 scientific paper (total in 1 paper)

Approximation of the derivatives of a function defined on a simplex under Lagrangian interpolation

N. V. Baidakovaab, Yu. N. Subbotina

a N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
References:
Abstract: New upper bounds are found in the problem of approximation of $k$th derivatives of a function of $d$ variables defined on a simplex by the derivatives of an algebraic polynomial of degree at most $n$ ($0\leqslant k\leqslant n$) interpolating the values of the function at equidistant nodes of the simplex. The estimates are obtained in terms of the diameter of the simplex, the angular characteristic introduced in the paper, the dimension $d$, the degree $n$ of the polynomial, and the order $k$ of the derivative to be estimated and do not contain unknown parameters. These estimates are compared with those most frequently used in the literature.
Keywords: multidimensional interpolation, Lagrange interpolation polynomial on a simplex, finite element method.
Received: 17.06.2022
English version:
Mathematical Notes, 2024, Volume 115, Issue 1, Pages 3–11
DOI: https://doi.org/10.1134/S0001434624010012
Bibliographic databases:
Document Type: Article
UDC: 517.51
MSC: 65D05
Language: Russian
Citation: N. V. Baidakova, Yu. N. Subbotin, “Approximation of the derivatives of a function defined on a simplex under Lagrangian interpolation”, Mat. Zametki, 115:1 (2024), 3–13; Math. Notes, 115:1 (2024), 3–11
Citation in format AMSBIB
\Bibitem{BaiSub24}
\by N.~V.~Baidakova, Yu.~N.~Subbotin
\paper Approximation of the derivatives of a function defined on a simplex under Lagrangian interpolation
\jour Mat. Zametki
\yr 2024
\vol 115
\issue 1
\pages 3--13
\mathnet{http://mi.mathnet.ru/mzm13623}
\crossref{https://doi.org/10.4213/mzm13623}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4734338}
\transl
\jour Math. Notes
\yr 2024
\vol 115
\issue 1
\pages 3--11
\crossref{https://doi.org/10.1134/S0001434624010012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85190887064}
Linking options:
  • https://www.mathnet.ru/eng/mzm13623
  • https://doi.org/10.4213/mzm13623
  • https://www.mathnet.ru/eng/mzm/v115/i1/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:180
    Full-text PDF :6
    Russian version HTML:11
    References:21
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024