|
Matematicheskie Zametki, 2023, Volume 114, Issue 4, paper published in the English version journal
(Mi mzm13588)
|
|
|
|
Papers published in the English version of the journal
On the Norms and Eigenvalues of $r$-Circulant Matrices with $k$-Mersenne and $k$-Mersenne–Lucas Numbers
M. Kumaria, K. Prasada, E. Ozkanb, J. Tantic a Department of Mathematics, Central University of Jharkhand, Ranchi
b Erzincan Binali Yıldırım University
c Babasaheb Bhimrao Ambedkar University
Abstract:
In this work, we study the $r$-circulant matrix $ C_r = Circ_r(c_0, c_1,c_2,...,c_{n-1})$ such that the entries of $C_r $ are $c_i=M_{k,a+ib}$ or $c_i=R_{k,a+ib}$, where $M_{k,a+ib}$ and $R_{k,a+ib}$ are $k$-Mersenne and $k$-Mersenne–Lucas numbers, respectively. We obtain the eigenvalues and determinants for the matrices and some important identities for the $k$-Mersenne and $k$-Mersenne–Lucas numbers. Furthermore, we find norms and bounds estimation for the spectral norm for these $r$-circulant matrices.
Keywords:
$k$-Mersenne number, $k$-Mersenne–Lucas number, $r$-circulant matrix, eigenvalue, Euclidean norm, spectral norm.
Received: 19.05.2022 Revised: 25.01.2023
Citation:
M. Kumari, K. Prasad, E. Ozkan, J. Tanti, “On the Norms and Eigenvalues of $r$-Circulant Matrices with $k$-Mersenne and $k$-Mersenne–Lucas Numbers”, Math. Notes, 114:4 (2023), 522–535
Linking options:
https://www.mathnet.ru/eng/mzm13588
|
|