|
A $T(P)$-Theorem for Zygmund Spaces on Domains
A. V. Vasina, E. Doubtsovb a Admiral Makarov State University of Maritime and Inland Shipping, St. Petersburg
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
Abstract:
Suppose given a bounded Lipschitz domain $D\subset \mathbb{R}^d$, a higher-order modulus of continuity $\omega$, and a convolution Calderón–Zygmund operator $T$. The restricted operators $T_D$ that are bounded on the Zygmund space $\mathcal{C}_{\omega}(D)$ are described. The description is based on properties of the functions $T_D P$ for appropriate polynomials $P$ restricted to $D$.
Keywords:
Zygmund space on a domain, $T(P)$-theorem, restricted Calderón–Zygmund operator.
Received: 03.05.2022 Revised: 25.07.2022
Citation:
A. V. Vasin, E. Doubtsov, “A $T(P)$-Theorem for Zygmund Spaces on Domains”, Mat. Zametki, 114:1 (2023), 38–56; Math. Notes, 114:1 (2023), 30–45
Linking options:
https://www.mathnet.ru/eng/mzm13575https://doi.org/10.4213/mzm13575 https://www.mathnet.ru/eng/mzm/v114/i1/p38
|
|