Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2023, Volume 114, Issue 1, Pages 38–56
DOI: https://doi.org/10.4213/mzm13575
(Mi mzm13575)
 

A $T(P)$-Theorem for Zygmund Spaces on Domains

A. V. Vasina, E. Doubtsovb

a Admiral Makarov State University of Maritime and Inland Shipping, St. Petersburg
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
References:
Abstract: Suppose given a bounded Lipschitz domain $D\subset \mathbb{R}^d$, a higher-order modulus of continuity $\omega$, and a convolution Calderón–Zygmund operator $T$. The restricted operators $T_D$ that are bounded on the Zygmund space $\mathcal{C}_{\omega}(D)$ are described. The description is based on properties of the functions $T_D P$ for appropriate polynomials $P$ restricted to $D$.
Keywords: Zygmund space on a domain, $T(P)$-theorem, restricted Calderón–Zygmund operator.
Funding agency Grant number
Russian Foundation for Basic Research 20-01-00209_a
This work was supported by the Russian Foundation for Basic Research, grant no. 20-01-00209_a.
Received: 03.05.2022
Revised: 25.07.2022
English version:
Mathematical Notes, 2023, Volume 114, Issue 1, Pages 30–45
DOI: https://doi.org/10.1134/S0001434623070039
Bibliographic databases:
Document Type: Article
UDC: 517.51+517.98
MSC: 42B20; 46E25
Language: Russian
Citation: A. V. Vasin, E. Doubtsov, “A $T(P)$-Theorem for Zygmund Spaces on Domains”, Mat. Zametki, 114:1 (2023), 38–56; Math. Notes, 114:1 (2023), 30–45
Citation in format AMSBIB
\Bibitem{VasDou23}
\by A.~V.~Vasin, E.~Doubtsov
\paper A $T(P)$-Theorem for Zygmund Spaces on Domains
\jour Mat. Zametki
\yr 2023
\vol 114
\issue 1
\pages 38--56
\mathnet{http://mi.mathnet.ru/mzm13575}
\crossref{https://doi.org/10.4213/mzm13575}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4634769}
\transl
\jour Math. Notes
\yr 2023
\vol 114
\issue 1
\pages 30--45
\crossref{https://doi.org/10.1134/S0001434623070039}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85168711101}
Linking options:
  • https://www.mathnet.ru/eng/mzm13575
  • https://doi.org/10.4213/mzm13575
  • https://www.mathnet.ru/eng/mzm/v114/i1/p38
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025