|
Sharp Bernstein Inequalities for Jacobi–Dunkl Operators
O. L. Vinogradov Saint Petersburg State University
Abstract:
We find sharp constants in the Bernstein inequality $$ \|\Lambda_{\alpha,\beta}^rf\|\le M\|f\| $$ for the Jacobi–Dunkl differential-difference operator $$ \Lambda_{\alpha,\beta}f(x) =f'(x)+\frac{A'_{\alpha,\beta}(x)}{A_{\alpha,\beta}(x)} \frac{f(x)-f(-x)}{2}\,. $$ Here $n,r\in\mathbb N$, $f$ is a trigonometric polynomial of degree $\le n$, the norm is uniform, $\alpha,\beta\ge -1/2$, and $A_{\alpha,\beta}(x)=(1-\cos x)^\alpha(1+\cos x)^\beta|{\sin x}|$ is the Jacobi weight. In the spaces $L_p$ with Jacobi weight, upper bounds are obtained.
Keywords:
Bernstein inequality, Jacobi–Dunkl operator, sharp constant.
Received: 28.04.2022
Citation:
O. L. Vinogradov, “Sharp Bernstein Inequalities for Jacobi–Dunkl Operators”, Mat. Zametki, 112:5 (2022), 770–783; Math. Notes, 112:5 (2022), 763–775
Linking options:
https://www.mathnet.ru/eng/mzm13568https://doi.org/10.4213/mzm13568 https://www.mathnet.ru/eng/mzm/v112/i5/p770
|
Statistics & downloads: |
Abstract page: | 211 | Full-text PDF : | 39 | References: | 59 | First page: | 13 |
|