Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2022, Volume 112, Issue 5, Pages 770–783
DOI: https://doi.org/10.4213/mzm13568
(Mi mzm13568)
 

Sharp Bernstein Inequalities for Jacobi–Dunkl Operators

O. L. Vinogradov

Saint Petersburg State University
References:
Abstract: We find sharp constants in the Bernstein inequality
$$ \|\Lambda_{\alpha,\beta}^rf\|\le M\|f\| $$
for the Jacobi–Dunkl differential-difference operator
$$ \Lambda_{\alpha,\beta}f(x) =f'(x)+\frac{A'_{\alpha,\beta}(x)}{A_{\alpha,\beta}(x)} \frac{f(x)-f(-x)}{2}\,. $$
Here $n,r\in\mathbb N$, $f$ is a trigonometric polynomial of degree $\le n$, the norm is uniform, $\alpha,\beta\ge -1/2$, and $A_{\alpha,\beta}(x)=(1-\cos x)^\alpha(1+\cos x)^\beta|{\sin x}|$ is the Jacobi weight. In the spaces $L_p$ with Jacobi weight, upper bounds are obtained.
Keywords: Bernstein inequality, Jacobi–Dunkl operator, sharp constant.
Funding agency Grant number
Russian Science Foundation 18-11-00055
The study was supported by the Russian Science Foundation under grant 18-11-00055.
Received: 28.04.2022
English version:
Mathematical Notes, 2022, Volume 112, Issue 5, Pages 763–775
DOI: https://doi.org/10.1134/S0001434622110128
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: O. L. Vinogradov, “Sharp Bernstein Inequalities for Jacobi–Dunkl Operators”, Mat. Zametki, 112:5 (2022), 770–783; Math. Notes, 112:5 (2022), 763–775
Citation in format AMSBIB
\Bibitem{Vin22}
\by O.~L.~Vinogradov
\paper Sharp Bernstein Inequalities for Jacobi--Dunkl Operators
\jour Mat. Zametki
\yr 2022
\vol 112
\issue 5
\pages 770--783
\mathnet{http://mi.mathnet.ru/mzm13568}
\crossref{https://doi.org/10.4213/mzm13568}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4538804}
\transl
\jour Math. Notes
\yr 2022
\vol 112
\issue 5
\pages 763--775
\crossref{https://doi.org/10.1134/S0001434622110128}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85148608992}
Linking options:
  • https://www.mathnet.ru/eng/mzm13568
  • https://doi.org/10.4213/mzm13568
  • https://www.mathnet.ru/eng/mzm/v112/i5/p770
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:211
    Full-text PDF :39
    References:59
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024