Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1998, Volume 63, Issue 6, Pages 835–846
DOI: https://doi.org/10.4213/mzm1353
(Mi mzm1353)
 

This article is cited in 24 scientific papers (total in 24 papers)

Stability of generalized solutions to equations of one-dimensional motion of viscous heat-conducting gases

A. A. Zlotnik, A. A. Amosov

Moscow Power Engineering Institute (Technical University)
References:
Abstract: Nonhomogeneous initial boundary value problems for a specific quasilinear system of equations of composite type are studied. The system describes the one-dimensional motion of a viscous perfect polytropic gas. We assume that the initial data belong to the spaces L(Ω) or L2(Ω) and the problems under consideration have generalized solutions only. For such solutions, a theorem on strong stability is proved, i.e., estimates for the norm of the difference of two solutions are expressed in terms of the sums of the norms of the differences of the corresponding data. Uniqueness of generalized solutions is a simple consequence of this theorem.
Received: 27.06.1996
English version:
Mathematical Notes, 1998, Volume 63, Issue 6, Pages 736–746
DOI: https://doi.org/10.1007/BF02312766
Bibliographic databases:
UDC: 517.958+533.7
Language: Russian
Citation: A. A. Zlotnik, A. A. Amosov, “Stability of generalized solutions to equations of one-dimensional motion of viscous heat-conducting gases”, Mat. Zametki, 63:6 (1998), 835–846; Math. Notes, 63:6 (1998), 736–746
Citation in format AMSBIB
\Bibitem{ZloAmo98}
\by A.~A.~Zlotnik, A.~A.~Amosov
\paper Stability of generalized solutions to equations of one-dimensional motion of viscous heat-conducting gases
\jour Mat. Zametki
\yr 1998
\vol 63
\issue 6
\pages 835--846
\mathnet{http://mi.mathnet.ru/mzm1353}
\crossref{https://doi.org/10.4213/mzm1353}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1679215}
\zmath{https://zbmath.org/?q=an:0917.35109}
\transl
\jour Math. Notes
\yr 1998
\vol 63
\issue 6
\pages 736--746
\crossref{https://doi.org/10.1007/BF02312766}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000076726600025}
Linking options:
  • https://www.mathnet.ru/eng/mzm1353
  • https://doi.org/10.4213/mzm1353
  • https://www.mathnet.ru/eng/mzm/v63/i6/p835
  • This publication is cited in the following 24 articles:
    1. Jinkai Li, Zhouping Xin, “Instantaneous Unboundedness of the Entropy and Uniform Positivity of the Temperature for the Compressible Navier–Stokes Equations with Fast Decay Density”, SIAM J. Math. Anal., 56:3 (2024), 3004  crossref
    2. Gui-Qiang G. Chen, Yucong Huang, Shengguo Zhu, “Global Spherically Symmetric Solutions of the Multidimensional Full Compressible Navier–Stokes Equations with Large Data”, Arch Rational Mech Anal, 248:6 (2024)  crossref
    3. Jinkai Li, Yasi Zheng, “Local Existence and Uniqueness of Heat Conductive Compressible Navier–Stokes Equations in the Presence of Vacuum Without Initial Compatibility Conditions”, J. Math. Fluid Mech., 25:1 (2023)  crossref
    4. Jinkai Li, Zhouping Xin, “Local and global well-posedness of entropy-bounded solutions to the compressible Navier-Stokes equations in multi-dimensions”, Sci. China Math., 66:10 (2023), 2219  crossref
    5. Tariq Mahmood, Zhaoyang Shang, Mei Sun, “On the vanishing elastic limit of compressible liquid crystal material flow”, Math Methods in App Sciences, 46:9 (2023), 10480  crossref
    6. Mahmood T., Sun M., “Global Solution to the Compressible Non-Isothermal Nematic Liquid Crystal Equations With Constant Heat Conductivity and Vacuum”, Adv. Differ. Equ., 2021:1 (2021), 517  crossref  isi
    7. Li J., Xin Zh., “Entropy-Bounded Solutions to the One-Dimensional Heat Conductive Compressible Navier-Stokes Equations With Far Field Vacuum”, Commun. Pure Appl. Math., 2021  crossref  isi
    8. Li J., Xin Zh., “Entropy Bounded Solutions to the One-Dimensional Compressible Navier-Stokes Equations With Zero Heat Conduction and Far Field Vacuum”, Adv. Math., 361 (2020), 106923  crossref  isi
    9. Li J., “Global Well-Posedness of Non-Heat Conductive Compressible Navier-Stokes Equations in 1D”, Nonlinearity, 33:5 (2020), 2181–2210  crossref  isi
    10. Li J., “Global Small Solutions of Heat Conductive Compressible Navier-Stokes Equations With Vacuum: Smallness on Scaling Invariant Quantity”, Arch. Ration. Mech. Anal., 237:2 (2020), 899–919  crossref  isi
    11. Gong H., Li J., Liu X.-G., Zhang X., “Local Well-Posedness of Isentropic Compressible Navier-Stokes Equations With Vacuum”, Commun. Math. Sci., 18:7 (2020), 1891–1909  isi
    12. Dou Ch., Xu Ya., 4Th International Conference on Advances in Energy Resources and Environment Engineering, IOP Conf. Ser. Earth Envir. Sci., IOP Conference Series-Earth and Environmental Science, 237, IOP Publishing Ltd, 2019  crossref  isi
    13. Li Ya. Jiang L., “Global Weak Solutions For the Cauchy Problem to One-Dimensional Heat-Conductive Mhd Equations of Viscous Non-Resistive Gas”, Acta Appl. Math., 163:1 (2019), 185–206  crossref  isi
    14. Li J., “Global Well-Posedness of the One-Dimensional Compressible Navier-Stokes Equations With Constant Heat Conductivity and Nonnegative Density”, SIAM J. Math. Anal., 51:5 (2019), 3666–3693  crossref  isi
    15. Alexander Zlotnik, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, 2018, 2421  crossref
    16. Fan J., Huang Sh., Li F., “Global strong solutions to the planar compressible magnetohydrodynamic equations with large initial data and vacuum”, Kinet. Relat. Mod., 10:4 (2017), 1035–1053  crossref  mathscinet  zmath  isi  scopus  scopus
    17. Alexander Zlotnik, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, 2016, 1  crossref
    18. Fan J. Jiang S. Nakamura G., “Stability of Weak Solutions to Equations of Magnetohydrodynamics with Lebesgue Initial Data”, J. Differ. Equ., 251:8 (2011), 2025–2036  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    19. Fan, JS, “Stability of weak solutions to the compressible Navier–Stokes equations in bounded annular domains”, Mathematical Methods in the Applied Sciences, 31:2 (2008), 179  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    20. Jiang, S, “Global well-posedness of the Cauchy problem for the equations of a one-dimensional viscous heat-conducting gas with Lebesgue initial data”, Proceedings of the Royal Society of Edinburgh Section A-Mathematics, 134 (2004), 939  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:433
    Full-text PDF :207
    References:75
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025