Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2022, Volume 111, Issue 5, Pages 643–662
DOI: https://doi.org/10.4213/mzm13509
(Mi mzm13509)
 

Separation of Coadjoint Orbits of Generalized Diamond Lie Groups

L. Abdelmoula, Y. Bouaziz

Faculty of Sciences, Department of Mathematics, Sfax University
References:
Abstract: Let $G$ be a type I connected and simply connected generalized diamond Lie group defined as the semidirect product of a $d$-dimensional Abelian Lie group $N$ with $(2n+1)$-dimensional Heisenberg Lie group $\mathbb{H}_{2n+1}$ for some $(n,d)\in(\mathbb{N}^*)^2$. Let $\mathfrak{g}^*/G$ denote the set of coadjoint orbits of $G$, where $\mathfrak{g}^*$ is the dual vector space of the Lie algebra $\mathfrak{g}$ of $G$. In this paper, we address the problem of separation of coadjoint orbits of $G$. We first specify the setting where $d=1$; we prove that the closed convex hull of coadjoint orbit $\mathcal{O}$ in $\mathfrak{g}^*$ does characterize $\mathcal{O}$. Whenever $d\ge2$, we provide a separating overgroup $G^+$ of $G$. More precisely, we extend the group $G$ to an overgroup denoted by $G^+$, containing $G$ as a subgroup, and we give an injective map $\varphi$ from $\mathfrak{g}^*$ into $(\mathfrak{g}^+)^*$, the dual vector space of Lie algebra $\mathfrak{g}^+$ of $G^+$ sending each $G$-orbit in $\mathfrak{g}^*$ to the $G^+$-orbit in $(\mathfrak{g}^+)^*$ in such a manner that the closed convex hull of $\varphi(\mathcal{O})$ does characterize $\mathcal{O}$, where $\mathcal{O}$ is a $G$-orbit in $\mathfrak{g}^*$.
Keywords: coadjoint orbit, closed convex hull separable, separating overgroup.
Funding agency Grant number
General Direction of Scientific Research and Technological Renovation LR 11 ES 35
This work was supported by the D.G.R.S.R.T. Research Laboratory: LR 11 ES 35.
Received: 28.06.2020
Revised: 08.06.2021
English version:
Mathematical Notes, 2022, Volume 111, Issue 5, Pages 659–675
DOI: https://doi.org/10.1134/S0001434622050017
Bibliographic databases:
Document Type: Article
UDC: 517.53+517.57
Language: Russian
Citation: L. Abdelmoula, Y. Bouaziz, “Separation of Coadjoint Orbits of Generalized Diamond Lie Groups”, Mat. Zametki, 111:5 (2022), 643–662; Math. Notes, 111:5 (2022), 659–675
Citation in format AMSBIB
\Bibitem{AbdBou22}
\by L.~Abdelmoula, Y.~Bouaziz
\paper Separation of Coadjoint Orbits of Generalized Diamond Lie Groups
\jour Mat. Zametki
\yr 2022
\vol 111
\issue 5
\pages 643--662
\mathnet{http://mi.mathnet.ru/mzm13509}
\crossref{https://doi.org/10.4213/mzm13509}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461296}
\transl
\jour Math. Notes
\yr 2022
\vol 111
\issue 5
\pages 659--675
\crossref{https://doi.org/10.1134/S0001434622050017}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85132922922}
Linking options:
  • https://www.mathnet.ru/eng/mzm13509
  • https://doi.org/10.4213/mzm13509
  • https://www.mathnet.ru/eng/mzm/v111/i5/p643
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:197
    Full-text PDF :8
    References:29
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024