Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2023, Volume 113, Issue 2, Pages 273–282
DOI: https://doi.org/10.4213/mzm13500
(Mi mzm13500)
 

This article is cited in 2 scientific papers (total in 2 papers)

Spectra of Self-Similar Ergodic Actions

V. V. Ryzhikov

Lomonosov Moscow State University
Full-text PDF (504 kB) Citations (2)
References:
Abstract: Self-similar constructions of transformations preserving a sigma-finite measure are considered and their properties and the spectra of the induced Gaussian and Poisson dynamical systems are studied. The orthogonal operator corresponding to such a transformation has the property that some power of this operator is a nontrivial direct sum of operators isomorphic to the original one. The following results are obtained. For any subset $M$ of the set of positive integers, in the class of Poisson suspensions, sets of spectral multiplicities of the form $M\cup\{\infty\}$ are realized. A Gaussian flow $S_t$ is presented such that the set of spectral multiplicities of the automorphisms $S_{p^{n}}$ is $\{1,\infty\}$ if $n\le 0$ and $\{p^n,\infty\}$ if $n>0$. A Gaussian flow $T_t$ such that the automorphisms $T_{p^{n}}$ have distinct spectral types for $n\le 0$ but all automorphisms $T_{p^{n}}$, $n>0$, are pairwise isomorphic is constructed.
Keywords: measure-preserving transformation, self-similar construction, weak closure, spectrum, isomorphism of ergodic systems.
Received: 20.03.2022
Revised: 05.09.2022
English version:
Mathematical Notes, 2023, Volume 113, Issue 2, Pages 274–281
DOI: https://doi.org/10.1134/S0001434623010303
Bibliographic databases:
Document Type: Article
UDC: 517.9
PACS: 517.9
Language: Russian
Citation: V. V. Ryzhikov, “Spectra of Self-Similar Ergodic Actions”, Mat. Zametki, 113:2 (2023), 273–282; Math. Notes, 113:2 (2023), 274–281
Citation in format AMSBIB
\Bibitem{Ryz23}
\by V.~V.~Ryzhikov
\paper Spectra of Self-Similar Ergodic Actions
\jour Mat. Zametki
\yr 2023
\vol 113
\issue 2
\pages 273--282
\mathnet{http://mi.mathnet.ru/mzm13500}
\crossref{https://doi.org/10.4213/mzm13500}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4563368}
\transl
\jour Math. Notes
\yr 2023
\vol 113
\issue 2
\pages 274--281
\crossref{https://doi.org/10.1134/S0001434623010303}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85185104113}
Linking options:
  • https://www.mathnet.ru/eng/mzm13500
  • https://doi.org/10.4213/mzm13500
  • https://www.mathnet.ru/eng/mzm/v113/i2/p273
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:206
    Full-text PDF :20
    Russian version HTML:139
    References:38
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024