Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2022, Volume 112, Issue 3, paper published in the English version journal (Mi mzm13498)  

Papers published in the English version of the journal

New Congruences for Broken $k$-Diamond and $k$ Dots Bracelet Partitions

Jing-Jun Yu

School of Mathematical Sciences, East China Normal University, Shanghai, 200241 Peoples Republic of China
Abstract: Let $\Delta_k(n)$ denote the number of broken $k$-diamond partitions of $n$. Recently, Radu and Sellers studied the parity of the function $\Delta_3(n)$ and posed a conjecture. They proved that the conjecture is true for $\alpha =1$. Using the theory of modular forms, we give a new proof of the conjecture for $\alpha = 1$. Based on these results, we deduce some new infinite families of congruences modulo 2 for $\Delta_3(n)$. Similarly, we find several new congruences modulo 4 for $\Delta_3(n)$ and a new Ramanujan type congruence for $\Delta_2(n)$ modulo 2. Furthermore, let $\mathfrak{B}_k(n)$ denote the number of $k$ dots bracelet partitions of $n$. We also deduce some new Ramanujan type congruences for $\mathfrak{B}_{5^\alpha}(n)$ and $\mathfrak{B}_{7^\alpha}(n)$.
Keywords: broken $k$-diamond partitions, $k$ dots bracelet partitions, congruences, Hecke eigenforms.
Received: 19.03.2022
Revised: 13.05.2022
English version:
Mathematical Notes, 2022, Volume 112, Issue 3, Pages 393–405
DOI: https://doi.org/10.1134/S0001434622090085
Bibliographic databases:
Document Type: Article
Language: English
Citation: Jing-Jun Yu, “New Congruences for Broken $k$-Diamond and $k$ Dots Bracelet Partitions”, Math. Notes, 112:3 (2022), 393–405
Citation in format AMSBIB
\Bibitem{Yu22}
\by Jing-Jun~Yu
\paper New Congruences for Broken $k$-Diamond and $k$ Dots Bracelet Partitions
\jour Math. Notes
\yr 2022
\vol 112
\issue 3
\pages 393--405
\mathnet{http://mi.mathnet.ru/mzm13498}
\crossref{https://doi.org/10.1134/S0001434622090085}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4498937}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85141066500}
Linking options:
  • https://www.mathnet.ru/eng/mzm13498
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:102
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024