Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2022, Volume 112, Issue 6, Pages 850–866
DOI: https://doi.org/10.4213/mzm13465
(Mi mzm13465)
 

This article is cited in 1 scientific paper (total in 1 paper)

Equivalence Classes of Parseval Frames

S. Ya. Novikov, V. V. Sevost'yanova

Samara National Research University
Full-text PDF (525 kB) Citations (1)
References:
Abstract: On the set of frames in a finite-dimensional space, we introduce the widest possible equivalence preserving the main characteristics of frames, that is, tightness, equiangularity, and spark (the least number of linearly dependent vectors). This equivalence is known as projective–permutational unitary equivalence. For example, we show that full spark equiangular tight frames in the spaces $\mathbb{R}^3$, $\mathbb{R}^5$, and $\mathbb{R}^7$ are unique up to equivalence. A similar uniqueness result is obtained for the general uniform Parseval frame of $d+1$ vectors in the space $\mathbb{R}^d$. Related questions have been raised in the literature several times. Calculating the spark is computationally much harder than calculating the rank of a matrix. Here we present an algorithm that can possibly simplify the spark calculation. The use of Seidel matrices and the Naimark complement technique proves to be very useful in the classification of frames up to equivalence.
Keywords: tight frame, projective–permutational unitary equivalence, spark, uniqueness, Naimark complement.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2022-878
The work was carried out in the framework of the Program for Development of the Scientific and Educational Mathematical Center of the Volga Federal District (Agreement No. 075-02-2022-878).
Received: 24.02.2022
English version:
Mathematical Notes, 2022, Volume 112, Issue 6, Pages 940–954
DOI: https://doi.org/10.1134/S0001434622110281
Bibliographic databases:
Document Type: Article
UDC: 517.982.254
Language: Russian
Citation: S. Ya. Novikov, V. V. Sevost'yanova, “Equivalence Classes of Parseval Frames”, Mat. Zametki, 112:6 (2022), 850–866; Math. Notes, 112:6 (2022), 940–954
Citation in format AMSBIB
\Bibitem{NovSev22}
\by S.~Ya.~Novikov, V.~V.~Sevost'yanova
\paper Equivalence Classes of Parseval Frames
\jour Mat. Zametki
\yr 2022
\vol 112
\issue 6
\pages 850--866
\mathnet{http://mi.mathnet.ru/mzm13465}
\crossref{https://doi.org/10.4213/mzm13465}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4538811}
\transl
\jour Math. Notes
\yr 2022
\vol 112
\issue 6
\pages 940--954
\crossref{https://doi.org/10.1134/S0001434622110281}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85145418169}
Linking options:
  • https://www.mathnet.ru/eng/mzm13465
  • https://doi.org/10.4213/mzm13465
  • https://www.mathnet.ru/eng/mzm/v112/i6/p850
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:187
    Full-text PDF :24
    References:52
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024